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Abstract

Testing is the dominating verification technique used in industry today, and
many man-hours and resources are invested in the testing of software prod-
ucts. To cut down the cost of testing, automated test execution becomes
more and more popular. However, the selection of which tests to be exe-
cuted is still mainly a manual process that is error prone, and often without
sufficient guarantees that the system will be systematically tested. A way
to achieve systematic testing is to ensure that the tests satisfy a required
coverage criterion.

In this thesis two main problems are addressed: the problem of how to
formally specify coverage criteria, and the problem of how to generate a
test suite from a formal system model, such that the test suite satisfies a
given coverage criterion. We also address the problem of how to generate an
optimal test suite, e.g., with respect to the total time required to execute
the test suite.

Our approach is to convert the test case generation problem into a reach-
ability problem. We observe that a coverage criterion consists of a set of
items, which we call coverage items. The problem of generating a test case
for each coverage item can be treated as separate reachability problems. We
use an on-the-fly method, where coverage information is added to the states
of the analyzed system model, to solve the reachability problem of a cover-
age item. The coverage information is used to select a set of test cases that
together satisfy all the coverage items, and thus the full coverage criterion.

Based on the view of coverage items we define a language, in the form of
parameterized observer automata, to formally describe coverage criteria. We
show that the language is expressive enough to describe a variety of common
coverage criteria in the literature. Two different ways to generate test suites
form a system model and a given coverage criterion are presented. The
first way is based on model annotations and uses the model checker Uppaal.
The second way, where no annotations are needed, is a modified reachability
analysis algorithm that is implemented in an extended version of the Uppaal
tool.
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1 Introduction

The fact that unreliable computer systems can cause severe problems in our
society is indisputable. Apart from the personal and material damage an
incorrect system can cause to its user or owner, it can also be costly for the
manufacturer. For these reasons manufacturers strive to make their systems
as error-free as possible.

For a system to function correctly, there are two things that are impor-
tant: validation, to ensure that the right system is built, and verification,
to ensure that the system is built right. In this thesis we will consider the
verification problem.

Testing is the dominating verification method for increasing confidence
in a computer system. It is the process of exercising a system in a controlled
environment and examine if its behavior complies with the requirements of
a system. There are other quality improvement techniques used by software
engineers as part of the verification process. Other techniques are code walk
throughs, code inspections, and code reviews.

The purpose of testing is to reveal faults in the system. Testing can
only show the presence of faults, not their absence. There are two main
challenges in testing, to select and to execute test cases.

We will consider testing of the logical and temporal correctness of a sys-
tem, i.e., functional testing. There are many other types of testing. Among
them stress testing, which is often used interchangeably with both load test-
ing, and performance testing, i.e. testing when the system is heavily utilized.
A duration test is a test of the ability of a system to run over a longer period
of time, and robustness testing, sometimes called negative testing, conducted
by sending invalid input data, are also outside the scope of the thesis.

1.1 Real-Time Systems

A real-time system is a system where the behavior of the system depends not
only on the input but also on the timing of the input. Such system can also
have requirements on the timing of its outputs. In order to test a real-time
system, we have to take into account not only what inputs to supply to the
system, but also when to supply them. For correct behavior of a real-time
system, a response should not only provide correct values, but the values
should also be provided at the right time-points.

We illustrate a few different timing requirements. (i) A machine that is
filling up soda bottles must stop after a certain amount of time in order not
to overfill. Hence the specification of an embedded controller of the machine
shall require an output from the controller to stop filling after that time.

(ii) A computer that distinguishes between single- an double-clicks from
an input device must measure the time between two consecutive clicks. First
after waiting the maximum time bound for a double-click, the computer can
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Figure 1: Black box testing

determine a first click as a single-click. If a second click arrives earlier, then
the two clicks should be interpreted as a double-click.

(iii) A car control system might have to react to a brake signal within a
given time bound. During the reaction time, the engine ignition must still
be on time with the requested precision.

1.2 Testing

Testing of system behavior can be categorized into white box and black box
testing. In white box testing, also called structural testing, or glass box test-
ing, tests are derived from knowledge about the structure of the software and
from implementation details. In black box testing, also called functional test-
ing, test data are derived from the specified functional requirements without
considering the internal program structure [ABC82]. The implementation
and the test cases can be developed in parallel, by two separate teams.

In Figure 1, a common setting for black box testing is shown. From a
specification of the system, test cases are derived. A test case includes input
values that stimulate the system to test some chosen functionality. This
could be parameters to start the system or sequences of input data. For
real-time systems also the timing of the input data should be supplied. The
test case generation results in a collection of test cases called a test suite.
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The generation may be done manually or automatically.

After the test suite is produced, a test harness executes the test suite
against the implementation under test. This produces a test result, which is
compared to the expected result, prescribed by the specification, by a test
oracle. The test oracle delivers a verdict for each test case in the test suite.
Ideally, the verdict of a test should be pass or fail. If all generated tests
pass, then this shows conformance between the test and the specification.

A failed test is a system failure, i.e., the system does not deliver the
expected result (erroneous or with incorrect timing). If the test is carried
out under the specified circumstances, then the failure shows that the system
has an error, i.e., a design flaw. When a test fails we identify the fault (the
defect) causing of the failure.

If a test has failed, the system (as a whole), does not conform to the test.
The test itself might not conform to the specification, and in that case the
test case should be changed and not the system. Further, the specification
may not express the intention of the system. In this case the the specification
may be changed and the test cases rewritten.

Often the expected test result can be incorporated into the test cases so
that the test harness can make the verdict itself; in this case the oracle is
a part of the test harness. This is especially good if the test cases consist
of long sequences, because the test harness can stop further interaction and
execute the next test case if it discovers an error.

1.3 Test Case Selection

For a program (or a function) that takes a finite set of input parameters, each
of which has a specified input domain, testing all combinations of parameter
values is referred to as exhaustive testing. The number of parameter combi-
nations can be very large, which makes exhaustive testing not applicable in
most practical cases.

One way to reduce the number of test cases in a test suite, and still test
all functionality in a specification, is by using partition testing. In partition
testing the value domains are divided into equivalence classes, and the tests
are selected so that at least one value from each equivalence class is tested.
Any values within the specified value domains can be chosen arbitrary. For
robustness testing, also values that exceed the minimum or maximum bound
of the domains can be chosen. Boundary values or extreme values are the
values that lie close to the border between valid and invalid data. It is
typically very interesting to select boundary values for tests.

If a system can receive arbitrarily long input sequences, and has an
internal state that is updated after each input then exhaustive testing is not
possible. Two examples of such systems are (i) a compiler that reads a source
code file as input (stream) and (ii) an elevator controller that repeatedly
reacting on input events. In addition to input sequences being arbitrarily
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long, the timing of the inputs matter for a real-time system.
If the internal structure of a system is known, as in white box testing, test

cases can be generated with knowledge of the actual code that is exercised
during test execution. It is possible to make one test suite tailored to test
one specific part of the code. The code can be instrumented to report which
lines are exercised, e.g., by using the gcov tool [vHW03]. A test suite can
be said to cover partially or fully the code with respect to some measure of
coverage, e.g., use of every statement or every branch in the code. Such code
coverage is typically used to measure the thoroughness of a given test suite.
It assists engineers to improve their test suites by pointing out the parts
not exercised. In Figure 1, the test suite would be affected by the specific
implementation if white box testing is used.

Model-based testing is a black box technique where a model is used as
specification. Often the model is examined by a tool to generate test suites.
In structural testing the code coverage can be used as a measure of thor-
oughness for a test suite. In the same way coverage on the model can be
used as a measure of thoroughness for a test suite in model-based testing.
Such a measure can be evaluated even before a test case is executed. As test
case generation can be automated in model-based testing, the test cases do
not have to be constructed by hand from the specification.

A test purpose is a specific objective (or property) that the tester would
like to test, and can be seen as a specification of a test case. Test purposes
can be used to select test cases. As an example of a test purpose, we consider
“test of a state change from state A to state B” in a model. For this purpose
a test case should be generated that covers the specific state change. If we
make a test purpose for all specified state changes, and generate test cases
for them, then we have a test suite that covers all specified state changes
in the model. As a test case can cause several state changes, and thus
fulfill several test purposes, a test suite might have fewer test cases than the
number of test purposes it fulfills.

In model-based testing, non-deterministic specifications can be used if
the cause of some decision is unknown or the details that determine the
decision are abstracted away. Because of the non-determinism, we will not
always have one possible response from an implementation, but several.
We can use adaptive test cases, which requires that the test harness has a
decision tree for each test case.

If a test purpose is to exercise a particular state change in the model,
and we make a test case for this state change, then we cannot be sure
that we will succeed (even with a correct system), if the specification allows
non-determinism. A decision tree can have arbitrary long branches without
any guarantee of capturing the desired behavior. When we reach a leaf of
a decision tree, we still might not have been able to exercise the desired
behavior. We cannot give the verdict fail, which would indicate that the
system is non-conformant with the test specification. Still, the test purpose

4



is not fulfilled, and thus the verdict pass would be misleading. In this case
we give the test the verdict inconclusive. We can run this test again and we
may get another result.

In this thesis we will use test cases with only one expected continuation.
A test harness that gives the verdict itself can abort the test case if an
output of a system is not expected. Only if the full test case is executed the
verdict pass is given. Our test cases will thus be a sequence of inputs and
outputs, not necessarily alternating. In the case of timed systems, a delay
will be specified between each input or output.

2 Modeling Timed Systems

In model-based testing a model is used as the specification. A model is an
abstraction of a desired system behavior, which can consist of the combined
behavior of applications, OS, hardware etc. Benefits of modeling includes
understanding of the specification in an early stage, and exposition of ambi-
guities in the specification and the design. For some types of models, model
checking tools (such as SPIN [Hol97] or Uppaal [LPY97]) can be used to
formally verify properties of the model, in order to find errors in a model
before implementing it. Errors found late in a project are known to be more
expensive than errors found early. Thus, it is important to make a correct
specification.

The abstraction process results in a model. Different types of abstrac-
tions often have to be made to construct a model. An integer variable that
is used only by a model in a decision that evaluates whether the value is odd
or even, can be reduced to two abstract values “integer-odd” and “integer-
even”. An IP-number used when communicating with a system is typically
something that can be completely abstracted away.

The right level of abstraction is crucial for any model-based technique to
be successful. If a model is too abstract, the targeted functionality cannot
be tested, because details important to distinguish test cases are missed. If
the model is too concrete, the construction of the model is as error prone
as a full implementation. When model-based testing is used, the control
states are typically in focus, and data are abstracted as much as possible.
This is possible only if the data does not affect the control behavior of the
implementation, e.g., the payload in a network protocol.

An abstract test case generated from a model is on the same abstrac-
tion level as the model. If we have an abstract test case with the abstract
values “integer-odd” and “integer-even” for a variable, then we can replace
“integer-odd” and “interger-even” with, e.g., 0 and 1. Only when all ab-
stact values have been replaced with concrete values, the test case can be
executable. Other data that have been completely abstracted away must of
course also be added, e.g., IP-numbers.

5



For a given system, it is possible to produce many models of different
aspects. If there are different functionalities that are orthogonal to each
other, then it is often easier to validate each functionality in a separate
model than to validate a combined model. To have a valid model is the base
requirement of all model-based testing.

2.1 Untimed State Machines

In this section we will introduce state machines without time. A finite state
machine (FSM) is an abstract machine with a finite set of locations L, a finite
set of edges E, and a finite set of actions A
t. One of the locations l0 2 L is
the initial location. An FSM uses actions to interact with its environment.
An edge is a triple (l; �; l0) 2 E that has a source location l 2 L and a
destination location l0 2 L and is labeled with an action � 2 A
t.

In our case the actions can be partitioned in input actions, output ac-
tions, and internal actions. We will use the convention that an input action
is suffixed with “?”, and an output action is suffixed with “!”. An internal
action has no suffix.

An extended finite state machine (EFSM) consists of locations L, edgesE, actions A
t, and variables V . The location l0 2 L is the initial location.
Each variable x has a value domain. An edge is a quintuple (l; g; �; u; l0) 2 E
that has a source location l 2 L and a destination location l0 2 L and is
labelled with a guard g, an action �, and an update u. The guard g is a
predicate over V , and the update u is an assignment where each variable v
is assigned a value from an expression over V . If there is no assignment the
variable values are unchanged.

A state of an EFSM is a tuple hl; �i where l 2 L and � is a mapping fromV to values. The initial state is hl0; �0i where �0 is the initial mapping. A
transition between two states, i.e., from hl; �i to hl0; �0i is possible if there
is an edge (l; g; �; u; l0) 2 E where the g is satisfied for the valuation �, �0
is the result of updating � according to u, and � is an action that require
communication with the environment, if the action is not internal.

If we assume that every variable has a finite domain in an EFSM, then
the EFSM can be viewed as a compact notation of an FSM. It is possible to
unfold the EFSM such that each EFSM state is an FSM location and each
EFSM transition is an FSM edge.

In Figure 2 an EFSM modeling a parking ticket machine is shown. The
initial location is named display. There is one variable amount that is
initially 0. As a first transition the EFSM can only output the actiondisplayPayMore that models displaying the message “Pay more”. In thewait location, the user can add 5 credit coins that increment the value ofamount. If the user has paid enough for a ticket, the EFSM outputs the
action displayPressT i
ket, else it outputs the action displayPayMore. Af-
ter an output displayPressT i
ket from the EFSM the user can input ti
ket

6



wait

display

gotTicket

add5?
amount:=amount+5

amount < 10

amount >= 10
displayPressTicket!

amount < 10
displayPayMore!

ticket?
amount >= 10

amount:=amount-10

printTicket!

Figure 2: EFSM model of a parking ticket machine.

and get an output printT i
ket in return. Note that the wait location is used
in three different states hwait; 0i, hwait; 5i, and hwait; 10i. In the first two
the user is allowed to add more credits, and in the last the user is allowed
to request a ticket.

2.2 Timed Automata

We use timed automata [AD94] to model timed systems. Let X be a set of
non-negative real-valued variables called clocks. Let G(X) be a set of guards
on clocks generated by the grammarg ::= x ./ 
 j x� y ./ 
 j g1 ^ g2

where x; y 2 X, 
 2 N, and ./2 f<;�;=;�; >g. A timed automaton consists
of locations L, edges E, actions A
t, and clocks X. One of the locationsl0 2 L is the initial location. An edge (l; g; �; r; l0) 2 E has a source locationl 2 L and a destination location l0 2 L and is labelled with a guard g 2 G(X),
an action � 2 A
t, and set of clocks to reset r � X called reset.

A state of a timed automaton is a tuple hl; �i where l 2 L and � 2 RX�0

is a mapping from X to non-negative real-time values. The initial state ishl0; �0i where �0 is the initial mapping where every clock is mapped to 0.
There are two kinds of transitions, discrete transitions and delay transitions.
A discrete transition between two states written hl; �i ��! hl0; �0i is possible
if there is an edge (l; g; �; r; l0) 2 E where the guard g is satisfied for the
valuation �, where r is an update so that �0 = �[x=0] for all x 2 r, and � is

an action. In a delay transition between two states written hl; �i d�! hl; �+di,
where d 2 R>0 , and �+d denotes the result of incrementing all clock values
in � with d. Locations can have invariants, that set an upper bound on a
clock value. The bound constrains the delay so that the automaton is not
allowed to stay in the location forever. Timed automata use dense time,
which means infinite precision of clocks.
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UNARMED dc2ARMED
c<=C

ARMED
b<=B BOOMED

dc2UNARMED
c<=C,
b<=B

click? c:=0 click? b:=0c<C boom!b==B

b==B boom!

c==C click?
c:=0

click?c<C

c==C

Figure 3: Timed automaton describing the function of the explosive pen in
the movie Golden Eye

In Figure 3 a timed automaton modeling an explosive pen is shown. A
double-click, i.e., an input 
li
k twice within the time bound C, will arm
the pen to explode after B time units. Here B and C are positive integers.
An armed pen can be unarmed by another double-click if the double-click is
supplied before the explosion. The explosion is modeled in the automaton
by the output boom. If the pen works correctly it could be used for its
purpose safely. Needless to say, incorrect use could be devastating.

3 Coverage

Time and money are commonly used criteria to determine whether to end
the testing of a product or not. Unfortunately these criteria do not set any
quality standard on the product. When should then a system be considered
to be tested thoroughly enough? Without any objective measure this is a
hard question. If parts of the system are not exercised at all, then the system
is probably not tested thoroughly enough.

A test suite can be measured with respect to the amount of code it ex-
ercises, e.g., by measuring the number of statements executed in the system
under test. The number of statements exercised can be compared with the
total number of statements, and the percentage can be calculated. A cri-
terion for enough thoroughness can be to exercise a certain percentage of
the number of statements. Here we use statements as our measure, but
we could also use the exercised branches between statements. If we use the
statement measure, a test suite is said to cover a statement, if the statement
is exercised (at least once) during an execution of the test suite. Coverage
with respect to the statement measure is called statement coverage [Mye79],
and coverage with respect to the branch measure is called branch coverage
[Mye79]. Statement coverage and branch coverage are examples of coverage
criteria that can be used to measure coverage provided by a test suite.
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There are many other coverage criteria. We will give an overview of
several other coverage criteria later in this section. For this purpose we will
use the terminology from Paper C of this thesis, to explain the coverage
criteria. Any coverage criterion consists of a set of measurable items. We
will use coverage item as a generic term for a measured item. For statement
coverage, exercising a statement will fulfill a coverage item. There will be
one coverage item for each statement. Thus, to achieve full (statement)
coverage all statements must be exercised.

It may not be possible to list all (feasible) coverage items without sophis-
ticated analysis of the code. Even then, a coverage criterion must describe
how to identify a coverage item and how to distinguish coverage items from
each other.

Coverage criteria have so far been discussed in the context of coverage
on code, but it is similar to measure coverage for a model. For model-
based testing, analysis of coverage with respect to a criterion, can be used
to guide test suite generation. When a black box test suite is executed, the
actual code coverage can be measured. Based on the result, additional test
cases can be added. White box measures can thus complement test suites
generated with black box techniques.

In an EFSM (or other models as FSM or TA) to visit all locations is
called location coverage, and to traverse all edges is called edge coverage. In
the remainder of this section, we first describe some classic logic-coverage
criteria in their original context of code. We then describe data flow and
projected state coverage in an EFSM context.

3.1 Logic Coverage

White-box testing is concerned with the degree of thoroughness to which
test cases exercise the logic (or source code) of the program. We distinguish
between decisions that decide the continuation of the program control and
statements that are non-branching. In an if-statement (in a C-like syntax)

if (x == 2 ^ y � 6) s1; else s2;

the decision is “x == 2 ^ y � 6”. It decides which of the branches of
statements, s1 or s2, the program control should follow. Subexpressions
that do not contain ^, _, or : are called conditions, e.g., x == 2 and y � 6.
The execution order or branching inside a decision is not considered.

We have already described the statement coverage criterion, which re-
quires a test suite to execute each statement in the system under test. If
100% coverage cannot be achieved, then there must be some dead code in the
implementation. Statement coverage is similar to line coverage or basic block
coverage. In basic block coverage a sequence of non-branching statements is
the measured unit, but because basic blocks are non-branching, basic block
and statement coverage are equivalent metrics, given that full blocks are
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always executed. In statement coverage each statement corresponds to a
coverage item. The statement identifies the coverage item.

We have also described decision coverage (DC), but under the name
branch coverage, which stipulates that each possible branch must be tra-
versed, e.g., both the true and the false branch must be traversed for an
if-statement. In a switch-statement all cases must be traversed. This means
that the decision expression is considered as one unit without considering
its conditions.

For a decision, e.g., 
1_ 
2 in an if-statement, where 
1 and 
2 are condi-
tions, DC can be achieved by two test cases where the conditions evaluate tof
1 = true; 
2 = falseg and f
1 = false; 
2 = falseg, i.e., the truth value of
condition 
2 is not changed. In DC each outgoing branch from each decision
corresponds to a coverage item. The branch identifies the coverage item.

The condition coverage criterion (CC) [Mye79] is sensitive to each con-
dition as it require all possible outcomes of each condition in a decision. In
general CC is a stronger criterion than DC, but this is not always true.
For a decision, e.g., 
1 _ 
2 in an if-statement, CC can be covered by
test cases where the conditions evaluate to f
1 = true; 
2 = falseg andf
1 = false; 
2 = trueg. As both evaluations of 
1 _ 
2 become true, DC is
not fulfilled and the false branch will never be traversed. In CC a coverage
item is identified by a tuple h
i; bi, where 
i is a condition in the code, andb defines the truth value of 
i, i.e., there are two coverage items for every
condition.

The multiple condition coverage (MCC) [Mye79] requires that all pos-
sible combinations of outcomes of the conditions in each decision must be
exercised. Let di be an index that identifies the ith decision, ni be the num-
ber of conditions in di, and Ki be a tuple of truth values of the possible
outcomes of the conditions of di. In MCC a coverage item is identified byhdi; kji, where kj 2 Ki is an outcome of the conditions of the decision di.

A relaxation of the MCC criterion is the modified condition/decision
coverage (MC/DC) criterion created by Boeing [RCT92, CM94]. It requires
(for each decision) every condition to modify the outcome of the decision
without changing the truth values of the other conditions in the decision. As
the modifying condition must change the outcome of the decision without
changing the other truth values MC/DC subsumes both DC and CC.

In MC/DC a coverage item is identified by hdi; 
ji, where 
j is a condition
in a decision di, so that 
j has made the the decision di both true and false
without changing the other conditions in di. We will use the intermediate
information h
j ; kj ; truei and h
j ; kj ; falsei, where kj is a tuple of truth
values for the other conditions than 
j in di. Because of the requirement
that the other conditions in the decision di are not allowed to change their
truth values h
j ; kj ; truei cannot exist without h
j ; kj ; falsei. This might
look a lot like CC, but we have different conditions for the coverage items.
Again for a decision, e.g., 
1 _ 
2 in an if-statement, CC can be covered
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by test cases where the conditions evaluate to f
1 = true; 
2 = falseg andf
1 = false; 
2 = trueg. All the possible CC coverage items are covered,
i.e., h
1; truei, h
1; falsei, h
2; truei, and h
2; falsei. If MC/DC is applied
the for the same test suite cover no items. If we add a case where f
1 =false; 
2 = falseg, then MC/DC will be covered, i.e., f
1 = true; 
2 =falseg, f
1 = false; 
2 = falseg will give h
1i, because we have h
1; k1; truei
and h
1; k1; falsei where k1 = (false), only 
1 change. The second coverage
item h
2i (only 
2 change) is covered by f
1 = false; 
2 = trueg, f
1 =false; 
2 = falseg. Note that the decision must be visited twice to fulfill
one coverage item. It is possible that this requires two test cases.

Switch coverage [Cho78], is a classic coverage criteria. The possible path
of control flows can not only split up in decisions they can also join, e.g.,
after an if statement. A “switch” is a combination of the entrance and the
exit branch of a basic block. If a basic block has two incoming and two
outgoing branches there are four possible “switches”. Put it another way, a
coverage item of the switch coverage criterion is a pair hbin; bouti, where bin
and bout are branches between basic blocks. The coverage item hbin; bouti is
fulfilled if the branch bin is the entrance and bout is an exit of a basic block.
This can be extended to n-tuples where n consecutive branches are exercised
to fulfill the coverage item.

3.2 Data Flow Criteria

Data flow testing criteria [CPRZ89] are an important part of the standard
coverage criteria. We first make some definitions. A variable is defined when
it is assigned a new value, e.g., 
 is defined in the statement 
 := k + 1. A
variable is used when it is part of a computation or a predicate. An example
of a computation-use (c-use) is k in the statement 
 := k+1, and an example
of a predicate-use (p-use) is x in a guard x == 1. A variable has a p-use in
all types of decisions. When we refer to the locations of the definitions or of
the uses we will use EFSM terminology, i.e., both assignments and guards
are located at edges. Without loss of generality we restrict the number of
assignments on an edge to one in the further discussion, thus an assignment
can be referenced by an edge. A path is a sequence of edges traversed by an
automaton consecutively.

Assume a variable x is defined at edge ed. Consider a path ed, e1, : : : ,en, eu, where the variable x is not redefined in the sub-path e1, : : : , en, then
the definition at ed reaches the edge eu. In this case the sub-path e1, : : : ,en is a definition-clear path with respect to x.

Reach coverage [Her76, LK83], also referred to as definition-use pair (du-
pair) coverage is a commonly used criterion. It requires that a test suite
includes all paths from a definition of a variable x to all the reachable edges
where x is used. A coverage item hx; ed; eui where x is a variable, ed is an
edge where variable x is defined, and eu is an edge with a use. If a definition
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of a variable x at edge ed reaches a use of x at edge eu with a definition-clear
path with respect to x, then the coverage item hx; ed; eui is fulfilled. Notice
that two different variables x and y can both be defined in ed and used ineu still hx; ed; eui and hy; ed; eui would not always be covered for the same
paths. This is because a definition-clear path from ed to eu with respect tox might not be a definition-clear path with respect to y and vice versa.

Another criterion is context coverage [LK83] or rather definition context
coverage. A context of a variable definition is the edges where the variables
used for the definition is defined, e.g., for a statement x := y+z the context
is (ey; ez) if y was defined at ey, and z at ez, when x is defined. The criterion
requires that a test suite includes all paths so that for every definition of a
variable x, every different context of the definition is represented. A coverage
item for context coverage is a pair hei; kii where ei is an edge with a use,
and ki is a tuple of the edges where the variables used in ei is defined. The
size if ki depends on the used variables in ei. For used variables v1; : : : ; vn
in ei, ki consists of e1; : : : ; en so that v1 is defined in e1 etc.

A similar criterion is ordered context coverage [LK83]. An ordered context
of a variable definition is a context where the edges in the context is listed
in the order of their definition, e.g., for a statement x := y + z the ordered
context is (e1; e2) where y was defined at e2, and z at e1, and the definition
of y is more recent of the two. A coverage item for ordered context coverage
is similar to one in context coverage with the difference that the positions
in the tuple ki are sorted in the order by the occurrence in the path to ei.

The all-paths [RW85] criterion is fulfilled if all possible paths are included
in the test suite. This is not feasible for general EFSMs that can have
arbitrary long paths or for code that has infinite loops. We consider only
systems with a finite number of paths with a specific entry and exit point.
The coverage criterion is fulfilled if all paths from the entry to the exit point
are included in the test suite. A coverage item for the all-paths criterion
consists of a single parameter p that is a full path from an entry point to
and exit point.

The all-defs [RW85] criterion is one of the easiest data flow criterion to
fulfill. It is enough to find one use for each definition. If we have a path
that contains a definition of a variable that reaches a use, then another path
that contains another use of the same definition does not cover anything
more. The criterion requires that a test suite includes paths so that every
definition has at least one use. A coverage item for the all-defs criterionhx; edi requires that a definition at edge ed of a variable x has a definition-
clear sub-path with respect to x to an edge where x is used. Notice that the
number of uses do not affect the number of coverage items for the all-def
criterion.

The all-uses [RW85] criterion is another name for reach coverage. The
all-p-uses [RW85] criterion is similar to all-uses, but the use at eu must be
a p-use. The all-c-uses [RW85] criterion is similar to all-uses, but the use at
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eu must be a c-use.

The all-du-path [RW85] criterion requires that all (definition-clear) paths
between a definition and a use with respect to the variable are included in
the test suite. A coverage item hx; pi is covered if there exists a definition-
clear path p with respect to a variable x, where p starts with an edge wherex is defined, and ends with an edge where the variable is used. The all-
du-paths criterion is stronger than all other definition-use criteria, because
every du-path must be covered.

In [Nta88], the Ntafos’ required k-tuples criteria are described. A 2-tuple
is simply a du-pair. We denote a du-pair (x1; e1; e2), where the variable x is
defined at edge e1 and used at edge e2. If at e2, the variable x1 affects the
definition of x2 in another du-pair (x2; e2; e3), then the two du-pairs are here
said to be coupled. Two coupled du-pairs forms a 3-tuple. Note that for a
3-tuple there are three edges involved. The criterion, for k-tuples, requires
that a test suite includes paths so that every k-tuple is included.

A coverage item he1; x1; : : : ; xk�1; eki for k > 2, where a variable x1 is
defined at edge e1, a variable xk�1 is used at edge ek, the edge ei where
2 � i � k � 1 is an edge where a variable xi�1 affects a another variable xi,
and there is a definition-clear path from ej to ej+1 with respect to xj where
1 � j � k � 1. Thus the definition at edge e0 affects the use at edge ek.

3.3 Coverage on Projected States

We have earlier described location coverage, i.e., to visit all locations in the
model. In an EFSM, locations together with valuations of variables are used
to define states. If we simply take the location of a state, then we have made
a projection from a state to a location.

Let M be an EFSM. We can describe the operational semantics of M
as a labeled directed graph G = (V;E), where vertices V corresponds to
the states of M and the labeled arcs E corresponds to the transitions ofM where the label is the action used. Let � : V ! V 0 be the projection
function that maps states in V to states in V 0. As an example �lo
 : V ! L,
where L is the set of locations in M , maps a state to the location of the
state, e.g., �lo
(hl; �i) = hli. If �(v) = �(v0), where v; v0 2 V then v and v0
are in the same equivalence class.

Let � be an equivalence relation and [v] denote an equivalence class,
where v 2 V . A projected state machine graph [FHNS02] under a equivalence
relation � is defined to be the labeled directed graph G0 = (V 0; E0), whereV 0 is the set of equivalence classes under �, and E0 is the set of labeled
arcs, where an arc labeled a from [v] to [v0] in E0 exists if 9s; s0: �(s) =
[v] ^ �(s0) = [v0] ^ hs a! s0i 2 E.

In Figure 4 a projected state machine graph is shown. We have projected
the parking ticket machine from Figure 2 on the variable amount. The
equivalence classes are amount = 10 and amount 6= 10. Notice that the

13
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ticket?
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printTicket!

Figure 4: A projected state machine graph. The ticket machine in Figure 2
has been projected on the amount variable.

projection is non-deterministic, the add5 action is associated with two arcs
without restrictions. As there is no other information in the projected states
than the equivalence class the target projected state is non-deterministic.

If we make a test suite that cover every arc in the projected state machine
graph, we note that there are two arcs labeled add5? to be covered, whereas
there is only one edge with add5? in the original model. A test suite must
cover both to add a five credit coin when the total amount will not sum up
to ten credits and when it does sum up to ten.

If we project the parking ticket machine from Figure 2 on equivalence
classes that are separated by both the location and the amount variable,
we would get the full state-space of the ticket machine. If there where more
variables used in the ticket machine the projection might have been useful
to concentrate on the behavior around the amount variable.

4 Test Case Generation by Model Checking

A model checker can formally verify temporal properties of a system model.
Reachability properties is one type of properties that a model checker can
verify. A reachability property specifies that a state with a certain property
should be reachable, e.g., “There exists a reachable state s so that P holds
for s”. A state is defined as reachable in a model, if it can be reached from
the initial state by zero or more transitions.

One way for a model checker to check reachability is to explore the
reachable states from the initial state, either until it finds a state where the
property holds or until there are no more states to explore. A path to such
a state is called a witness trace. It is a trace from the initial state to a state
where the property holds.

In the following, we will see how to transform the problem of test case
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generation into a reachability problem. We will use witness traces to gen-
erate a collection of test cases that fulfills the requested coverage criterion.
Each coverage item can be seen as a specific subproblem that can be solved
independently. We will first describe how to generate a test case for one
coverage item, and then show how make a test suite to cover a full coverage
criterion. The main idea is to use a reachability property to determine if
a coverage item can be fulfilled. We must thus construct a property that
becomes true when a coverage item is fulfilled.

4.1 Adding Coverage Information to States

To evaluate a coverage item, we extend model states with auxiliary infor-
mation. The purpose of the information is to determine whether a coverage
item is fulfilled by the path to a state or not. We update the auxiliary infor-
mation at each model transition. The actual coverage criterion determines
the specific auxiliary information needed.

For the edge coverage criterion a coverage item for an edge ei, denotedheii, is fulfilled if the edge has been traversed. In this case, when we traverse
an edge ei we update the auxiliary information with the coverage item heii.
We let reachability properties include auxiliary information, and we can
thus check the reachability of a state that includes a coverage item heii. If
reachable, a witness trace for the coverage item can be generated.

Location and edge coverage are examples of coverage criteria that can
be fulfilled momentarily, i.e., in a state or at a transition. For data-flow
criteria this is not the case. We need to use information of the history of
the path. Let hx; ed; eui be a coverage item for a definition-use pair wherex is a variable that is defined at edge ed and used at edge eu. To conclude
that hx; ed; eui is fulfilled when we traverse eu we must know that the most
recent definition of x was at ed. Let hx@e1i represent that x is defined ate1. This is added to the auxiliary information, but is replaced when x is
defined at another edge.

We have now seen how to find a witness trace for a single coverage item.
Note that a coverage item that once was fulfilled in a state will also be
fulfilled in its successor states, thus the covered items increase monotonically.
If we can find a state where all the items of a coverage criterion are covered,
we can generate a test case that satisfy the full coverage criterion.

In general, it may not be possible to find a single path that fulfills all
coverage items for a criterion. In this case we can combine different paths
so that they together achieve the requested coverage. This can be done by
adding a special “reset” transition to the model. The reset transition puts
the model in its initial state, but keeps the achieved coverage items in the
auxiliary information. Other information is discarded, e.g., where a variable
was last defined.

If a model checker finds a path p1 with coverage C1, and then, after a
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Figure 5: Two views on an observer for location coverage for the parking
ticket machine in Figure 2

reset transition, finds a path p2 with coverage C2 the total coverage achieved
will be C1 [ C2 etc. If the coverage in C1 [ C2 satisfies the property the
model checker will produce a witness trace p1 � reset � p2. We assume that
a reset transition can be recognized in the trace. We can now make a test
suite consisting of a test case t
1 based on p1 and a test case t
2 based onp2.

4.2 Observers

There are many coverage criteria in the literature. A tool could implement
support for them one by one, but this would not be very flexible. In Paper C
of this thesis we suggest a language to formally specify coverage criteria using
observer automata. The observer language is described for EFSM models,
but other models such as timed automata would be applicable as well.

An observer is an automaton defined by locations and edges that are la-
beled with predicates. An observer automaton has an initial location marked
is marked � and a set of accepting locations marked }. An observer collects,
in a path, the auxiliary information that are used in the coverage criterion.
The information must include status for all coverage items. Intuitively the
observer follows the transition of an EFSM, and the set of possible observer
locations is the auxiliary information.

An observer has always the possibility to stay in the initial location or
in an accepting location. A location that is not an initial or an accepting
location have to take an observer edge at each EFSM transition. If there are
no enabled edges for a location, it is removed from the auxiliary information.

In Figure 5 two observers are shown for location coverage of the park-
ing ticket machine in Figure 2. We recall that the parking ticket machine
has three locations named display, wait, and gotT i
ket. The observer in
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Figure 5 (i) has three accepting location, one for each possible EFSM loca-
tion in Figure 2. After a transition in the EFSM, the predicate t l=wait is
satisfied if wait was the target location of the EFSM transition. Observer
location lo
(wait) represents coverage item hwaiti for the location coverage
criterion. It is similar for the other locations and the other edges.

In Figure 5 (ii) a parameterized observer is shown. If the parking ticket
machine in Figure 2 is observed then the observer (i) and (ii) are equivalent.
For Figure 5 (ii) the possible locations of the EFSM is the domain of pa-
rameter L, and thus there is one accepting observer location (and coverage
item) for each location.

The parameterized observer has the advantage over the non-parameterized
that the domains of the parameters do not have to be specified at the same
time as the observer automaton. Thus a parameterized observer expresses
a coverage criterion for any EFSM. A parameterized location represents the
collection of locations obtained by instantiating its parameters, and similar
for the edges.

Technically we superpose an observer onto an EFSM, so that each state
are of the form hhl; �i k Qi, where hl; �i is a state of the EFSM, and Q is a
set of locations of the observer. A transition hhl; �i k Qi; hhl0; �0i k Q0i of
this construct is possible if (i) a transition of the EFSM hl; �i ; hl0; �0i is
possible and (ii) Q0 is a set of every possible q0 such that there is an observer
transition q ; q0 where q 2 Q. Observer transitions are done in response to
an EFSM transition, thus the details are known about the EFSM transition
(including the source and destination EFSM states). An observer locationq in Q may have several or zero, possible transitions.

From the user’s point of view an observer automaton can be seen as
non-deterministic. None or many outgoing edges can be enabled from a
parameterized location. The transition from Q to Q0 is however determin-
istic. As the transition is calculated by subset construction, the underlying
semantics are deterministic.

In Figure 6 an observer for the all-uses coverage criterion is shown. The
initial location is marked q0. The observer has one parameterized accepting
location du. We use the convention to denote observer parameters with cap-
ital letters. The parameters can refer to variables, edges, locations, variable
valuations, etc., in the model. In this example we use the X parameter for
a variable, and the E, E0 parameters for two edges. If a variable amount is
defined at edge e1 in an EFSM transition, the observer edge with predicatedef(amount) ^ edge = e1 will become true. It is then possible for the ob-
server to make a transition from q0 location to the q1(amount; e1) location.
As long as there is no redefinition of amount in the EFSM, there is a pos-
sibility to stay in the location because of the self loop. If Q includes the
location q1(amount; e1) and amount is used in an EFSM transition at edgee2 a transition to the accepting location du(amount; e1; e2) is possible, i.e.,
the coverage item hamount; e1; e2i is fulfilled. Note that a transition from
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q0

q1(X; E)

du(X; E; E0)
:def (X)

def (X) ^ edge=E

use(X) ^ edge=E
0

Figure 6: An all-uses (du-pair) observerq1(amount; e1) back to itself may also be possible by the self loop edge ifamount is not defined in the EFSM transition, i.e., the definition of amount
in e1 may have other uses than in e2 and the location q1(amount; e1) should
thus be kept in the auxiliary information.

4.3 Generating Test Suites from Timed Automata

We will assume that a specification is modeled as a network of timed au-
tomata compatible with the modeling language used in Uppaal. Such mod-
els has no external actions, we therefore need to model both a system and
its environment. This is usually done by making an unconstrained envi-
ronment. Such environment can at any time synchronize with the external
actions of the system model. In Figure 8 an environment is shown that has
no restrictions on when it can synchronize with the 
li
k action except after
a boom action has been received.

We will make a distinction between the specified system that we call
controller and the environment of the systems that we call environment.
Both the controller model and the environment model can consist of several
automata, and internal communication is possible, both inside the controller
and the environment model. The relation between the automata during
model checking and real world testing is shown in Figure 7. The upper
part shows the model partitioned as described above, and the lower part
shows the implementation under test (IUT) and the tester, e.g., the test
harness or a human user. The communication channel between the controller
and environment in the modeling world has a corresponding communication
medium in the real world.

To avoid generating test cases for which the system is not specified, the
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Figure 7: Model based testing

environment model can only provide the controller model with stimuli for
which the system is specified. Stimuli outside the scope of the specification
should not be provided. Other useful limitations to the environment models
can be to model a tester with limitations, e.g., a tester that cannot provide
stimuli infinitely fast.

A possible environment to generate test cases for the explosive pen in
Figure 3 is shown in Figure 8. The environment can synchronize with the
explosive pen on the 
li
k? action without timing constraints by the edge
decorated with 
li
k!. When the explosive pen explodes the environment
synchronize with the boom action. After the boom no more testing can be
done and the system must be reset to continue.

Let C = 2 and B = 10, (seen from the side of the environment) the
timed traces

TC 1: 
li
k! � 0 � 
li
k! � 10 � boom?

and

TC 2: 
li
k! � 2 � 
li
k! � 0 � 
li
k! � 0 � 
li
k! � 2 � 
li
k! � 0 � 
li
k! � 0 � 
li
k! �
0 � 
li
k! � 9 � 
li
k! � 1 � boom?

are two possible test cases. As all edges are traversed the all-edges coverage
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click!
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Figure 8: Timed automaton describing an possible environment to generate
test cases for the explosive pen in Figure 3.

criterion is satisfied. The sequence of locations passed in the exercise for the
test cases are for

TC 1: UNARMED, d
2ARMED, ARMED, BOOMED
and for

TC 2: UNARMED, d
2ARMED, UNARMED, d
2ARMED,ARMED, d
2UNARMED, ARMED, d
2UNARMED, UNARMED,d
2ARMED, ARMED, d
2ARMED, BOOMED.

When a witness trace is found for the required coverage, we convert the
trace to a test case. The witness trace is a timed trace, i.e., an alternating
sequence of inputs or outputs, and delays. Uppaal provides us with a
concrete trace, i.e., the trace has instantiated delays.

The trace can include transition that are internal for the controller or the
environment. During test execution, we can only observe the interface of the
implementation under test. A test case consists only of observable actions
and delays. On the other hand the witness trace includes all transitions in
the model. We project the trace on the interface between the controller and
the environment, i.e., we remove all internal actions and transitions, and we
sum up the delays between the remaining actions.

. If the remaining sequence has consecutive delays they are summed up
to the delay between the observable actions.

When we provide inputs according to a timed trace generated by Up-

paal, we expect no deviation between the behavior of the system and the
behavior in the timed trace. An unexpected response from the implemen-
tation under test could mean that the rest of the trace will be infeasible,
because of the fact that the internal state of the system differs from the
modeled state during generation. To be able to execute the generated test
cases we restrict the timed automata model. Our restrictions are similar as
the ones in [SVD01].
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We call an automaton that fulfills our restrictions a deterministic input
enabled output urgent timed automata (DIEOU-TA). For short the restric-
tions means that: (i) an input or a delay from one semantic state, leads only
to one semantic state, (ii) no delay can be done when an input is offered,
(iii) if the system can send an output no conflicting input, output, or delay
is permitted.

To make a concrete test case we transform each action of the model
in the trace to the real-world stimulus that the action models. The result
is a concrete test case that can be executed by a test harness to test an
implementation of the system.

We have not described what order to search the state space, i.e., which
successor to generate at a given moment. The most common search orders
used in reachability are breadth first and depth first. Besides search orders,
Uppaal can be instructed to return the witness that has the shortest trace
or the fastest trace. There are also support for heuristic algorithms that
are variations of the A� [BFH+01, LBB+01] algorithm. The A� algorithms
can speed up the generation performance if an admissible heuristics can be
found.

By combining our encoding of coverage and the ability of Uppaal to find
the fastest trace, we can generate test suites with a requested coverage that
are time-optimal, i.e., no test suite with the same coverage can be executed
faster. The generation is done by using the fastest trace algorithm, and saves
time for the user that gets the implementation tested as fast as possible.

If we let time be a cost so that a time unit delay gives a cost of one cost
unit, we can associate a constant cost with the reset transition. For paths
including resets, we give the resets a cost for the “inconvenience”. The reset
cost could be very different depending on whether the whole system has to
be restarted or if it is simple to reinitialize the system. The cost of a reset
could be set very high, and thus the number of resets will be kept as low as
possible for optimal test suite.

5 Summary of Papers

5.1 Paper A: Time-optimal Real-Time Test Case Generation

using Uppaal

In this paper we demonstrate how the problem of test case selection can be
transformed to a reachability problem. We show how test suites for both
single test purposes and coverage criteria can be generated with the Uppaal

model checking tool. Especially, we apply the minimum cost reachability
analysis, found in Uppaal, to generate the test suite that has the shortest
execution time, and still fulfills the given coverage criteria. The rationale
for this is not primary to stress the system but not to wait an unnecessary
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long time when executing the test cases. In this paper we also defines the
deterministic input enabled output urgent timed automata.

We annotate the model to keep track of coverage items. The coverage
is saved in model variables. If a state is found where all such variables are
set, then the trace to that state is a trace which fulfills the coverage criteria.
Thus, the problem of finding a trace that fulfills a coverage criteria has been
reduced to a reachability problem. If it is impossible to find full coverage
with one test case, we can decorate the model so that the system can be
restored to its initial state, but keeping the coverage item information.

We also present some experiments on how this technique scales and on
how the environment automata affect the time and memory used in the test
case generation. A major drawback of this approach is that the model has
to be annotated for every new coverage criterion. In Paper B we describe
an implementations which makes such modifications superfluous.

5.2 Paper B: A Test Case Generation Algorithm for Real-

Time Systems

In this paper we automate the test case generation of the coverage criteria
that where described in Paper A. We present an abstract algorithm for sym-
bolic reachability analysis with coverage and describes some aspects of an
prototype implementation. We also show some experiments which demon-
strate the benefits of a pruning technique we use.

In the paper we do not use any manually annotated auxiliary variables
to store the information of the covered coverage items as in Paper A. Instead
we keep track of the information automatically by extending the ordinary
Uppaal state with additional data. We represent both the covered items
and (as in the case of the definition use pair data-flow criteria) information
which affects the future possibilities to cover items.

In the implementation, a bit-vector B is used to store the coverage items.
If we already have explored an Uppaal state with coverage items B and find
the same state again (or a subset of it as the clock evaluations are symbolic)
but with coverage items B0 we do not continue to search with the second
state if its coverage items is a subset of the coverage items in the first. This is
possible because we favor better coverage and more coverage will not destroy
the property. In Paper A we stop the search only if we have equal coverage,
i.e., B = B0.

The main criticism of Paper B is that only the criteria that are imple-
mented in the tool are available to the user. It would be convenient if users
could define their own coverage criteria. This is addressed in Paper C.
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5.3 Paper C: Specifying and Generating Test Cases Using

Observer Automata

In Paper C we present a technique for specifying coverage criteria and a
method for generating test suites for systems whose behaviors can be de-
scribed as extended finite state machines (EFSM). The technique is demon-
strated for EFSMs but is also applicable for other types of models as, e.g.,
timed automata. We use observer automata to monitor traces. The tech-
nique is expressive and we demonstrate this by specifying a number of well-
known coverage criteria based on control- and data-flow information using
observer automata.

We assume that reset can be used as in Paper A to enable all coverage
items to appear in one trace. Further we representat the set of observer
locations in a state as a bit-vector, and show how to encode the transition
from one set of observer locations to another, given the EFSM transition.

Even if observers has its most obvious benefits with data-flow coverage
criteria they can also be used to express equivalence class-based coverage
criteria as projection [FHNS02] of the current EFSM state. It is up to the
implementer to supply macros and/or a language allowing users to create
their own macros, e.g., for equivalence class partitions of state variable val-
ues. The observer language proposed in Paper C makes it possible to express
coverage criteria that combines data-flow properties, e.g., a variable that is
first defined and later used, and equivalence class projections, e.g., take the
location from the state as parameter.

6 Related Work

In the literature, there are several work of test case generation from specifi-
cations of timed systems [SVD01, CKL98, ENDKE98, CO00, Kho02, NS03,
LMN05].

6.1 Models

To make the automata deterministic Springintveld et al [SVD01] use sim-
ilar restrictions as we do in Paper A. For testing purposes, they discretize
the time into a grid automata (with constant delays) based on regions and
generate test cases using Chow’s classical W-algorithm [Cho78] based on
characterization sets.

En-Nouaary et al. [ENDKE98] extends the generalized partial W-method
(Wp-method) [LvBP94] to timed input/output automata. In a grid-automaton
with synchronized actions all actions are discrete including delays, as in an
FSM. The automata used have no restrictions as our automata and if we
consider input and delay as tester actions and output and clock reset as
response actions such automaton is non-deterministic. En-Nouaary et al.
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transform the automaton to an non-deterministic automaton with transi-
tions labeled with tester action/response action pairs. This is an observable
non-determinism on which the generalized Wp-method can be applied. Af-
ter the last transition the current state can be calculated by the observed
response. We do not use discrete states in the model we are generating from,
thus our state space is not sensitive to the size of the delays in the same
manner. For number of clocks used, the complexity increase roughly equal
for the both approaches.

Typical for methods using the W-method or other checking sequence
techniques is that they rely on a fault hypothesis. Typically the faults can be;
action or output faults, transfer fault, extra transition in implementation,
and missing transition in the implementation. The method is sensitive for
the number of states in the specification. In our method we often can find
test cases without even generate all states in the specification.

It can be helpful to give restrictions of the environment to avoid gener-
ating uninteresting test cases. These restrictions can also be seen as guiding
to especially wanted test cases, e.g., it can be of the form of a test purpose.
In [CKL98], Castanet et al. make a synchronous product between a system
automaton and an acyclic test purpose automaton, where the test purpose
automaton has an accepting subset. If this subset can be reached then a
test of the given purpose can be generated. We show in Paper A that this
approach is valid in our setting.

In [CO00] Cardell-Oliver uses Uppaal timed automata as we do. Check-
ing sequences are not used for the full system but for some aspects. Test
views that are part of a test plan are used to focus on some functionality,
which make the size of the system suitable for generating test cases. Test
views are related to test purposes.

In [Kho02] Khoumsi uses timed automata, assuming determinism but
not output urgency. The model is transformed into an se-FSA, which is
an automaton where clocks and their operations have been replaced with
set and expire actions. The translation keeps the behavior of the automata.
This is equal to the symbolic representation in Uppaal with the extension
of equivalence classes done in [NS03] to get feasible traces. A test execution
program can get exact instructions from the se-FSA for the needed timers
and the values that must be set, the output to be observed, and the inputs
possible to send. The expiring of the timers and the output gives the test ex-
ecution program information of the state changes the implementation should
do in order to conform to the specification. Test sequences are generated
from the se-FSA with the generalized Wp-method.

Another type of restricted non-determinism is event recording automata
(ERA) [AFT94], which is a determinizable subset of timed automata. ERA
is basically timed automata where the is one clock per action and a clock
is reset on the corresponding action. ERA is used by Nielsen and Skou
in [NS03] where the model is determinized and the symbolic states found
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is divided into equivalence classes. In test cases where the specification
gives the implementation freedom to choose an output (among several) the
outcome trace is classed as a may trace. If it does not give the freedom then
the trace is a must trace. May and must traceability was proposed by De
Nicola and Hennessy [NH84]. The base of the symbolic state exploration of
Nielsen and Skou’s tool is Uppaal, as in our tool. We do not require ERA,
but deterministic automata. In fact as we require deterministic automata
we always know what clocks are reset when. We consider the symbolic state
space to be too large (even without the partition) to be generated for test
case selection. Instead we select the test suite according to the coverage
criteria. On the other hand some states might have to be visited several
times before a coverage item is fulfilled. Thus, our state space is sometimes
even larger because of the auxiliary information added. We use the same
witness trace function from Uppaal as [NS03].

Higashino et al. [HNTC99] use timed I/O automata where the timing
of the specified system is not controllable. The intervals where the action
can happen are analyzed and may and must test are generated with the
UIOv-method where, for each state, a transfer sequence and a succeeding
unique input/output sequence are treated as a test case.

Krichen and Tripakis [KT04] uses non-deterministic and partially observ-
able timed automata. They also analyze must and may preorder of trace
inclusion. Further they generate digital clock-tests which measure time with
a periodic clock. This is useful for a test program in practice and similar to
the approach in [Kho02]. The method can simulate clock drifts which can
generate less strict test cases. The method can be used both offline (before
test case execution) and online (during test case execution).

Another work using online testing is [LMN05] by Larsen et al. In
[LMN05] the tool T-Uppaal is presented (now renamed to Uppaal TRON).
As our tool, TRON is based on Uppaal but has no restrictions to deter-
ministic automata as our tool has. TRON tracks possible states of the
specification during execution and chooses input randomly. If there is no
possible state an error is reported. There is not yet any guidance in TRON,
so no specific coverage is guaranteed.

6.2 Observers

Our coverage observers are related to the work of Mandrioli et al. [MMM95]
using specification written in the TRIO language that extends classical tem-
poral logic to deal explicitly with time measures. In [MMM95] test cases
are generated using a history generator and a history checker. In [HJL03]
H̊akansson et al. use TRIO to generate a test oracle. The explicit purpose of
the test oracles in [HJL03] is to check safety properties during test execution.

Temporal logic is also used in the work of Hong et al [HLSU02, HCL+03]
to describe data-flow coverage criteria. They use a model checker to generate
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test cases for a CTL formula. The implicit for-all quantification in our work
is a novelty. Hong et al. have to make a reachability search for each coverage
item. The witness returned is a trace which covers that particular coverage
item.

There is also a relation to the work of Friedman et al. [FHNS02]. The pa-
rameters of our observers can be used in ways similar to projection coverage.
To extract the location from a state or the edge used to make a transition
is a projection of the state space. Friedman et al. use a test generation
tool GOTCHA. Various projections on the state graph of an EFSM can be
specified with a simple programming interface provided by GOTCHA.

6.3 Tools

There is a wide variety of test tool both in academia and in industry apart
from the already mentioned tools. The STG tool [CJRZ02] a symbolic
test generation tool using the IOSTS (Input Output Symbolic Transition
System) [RdBJ00]. Rusu et al. generates test cases from test purposes in
[RdBJ00] this is similar to our test purposes generated in Paper A. The STG
tool is related to TorX [dBRS+00] by du Bousquet et al. STG and TorX
are conformance test tools based on the ioco [Tre96, TdV00] conformance
relation defined by Tretmanns. Bouquet and Legeard describes the BZ-
Testing-Tools in [BL03] – a tool-set for animations and test generation from
B, Z, and statechart specifications.

Other more loosely related tools are tools for model checking of code.
The Bandera Tool Set in [HD01] model check properties of concurrent java
software. Bandera compiles java code and a specification in BSL (Ban-
dera Specification Language) to the input language of several model check-
ers. Bandera uses program slicing and data-abstraction (abstract interpre-
tation) on the model driven by the specification when it transform the code
to the model checking languages. BLAST [BCH+04] is a verification tool
for checking temporal safety properties of C programs. It constructs an
abstract reachability tree with program locations and truth values of pred-
icates. It has two levels of specification languages, i.e., observer automata
and relational queries. Observer automata monitors safety properties and
relational queries that may specify both structural and semantic properties
much as our coverage observers although not used for the same purpose.
Other tools that model check programs are SLAM [BR01] by Microsoft and
JFP [VHB+03] by NASA.

7 Conclusions and Future Work

In this thesis we have shown how the problem of test case generation from
timed automata models can be transformed into a reachability problem suit-
able for a model checker. By annotating the states with auxiliary informa-

26



tion about coverage, we can use Uppaal to generate time-optimal test suites
with an on-the-fly method.

We have also described a tool that can be used for test case generation
without annotations in the model. Information about coverage items are
automatically collected, for several coverage criteria. An improved algorithm
for reachability of properties including coverage has been described.

Further, we have proposed a generic language to specify coverage criteria.
The language is based on observer automata. We also show a method for
generating test suites from EFSM models, given a coverage criterion specified
with coverage observers.

Since an observer is an automaton with control structure, it is possible
to specify, e.g., data-flow coverage criteria. The observer parameters make
it possible to combine variables, locations, etc., from the current state into a
projection, that can be a part of a coverage item. In this sense we combine
two useful techniques in model-based testing.

We believe that the use of coverage observers simplifies the specification
of coverage criteria. The language can be used to specify and combine most
of the popular coverage criteria, as well as new criteria specified by users.

Currently we are developing a tool, called coXer, for test case genera-
tion. The tool is a completely new version of the tool described in Paper B,
and includes a tailored coverage observer language for networks of timed
automata. The tool has been applied in a case study of a WAP gateway
together with the telecom company Ericsson AB.

As future work, we will elaborate with different search strategies to rem-
edy the blow up of the state space that comes with the coverage data added
to the states. The coXer tool contains a separate module for coverage han-
dling, which could be plugged into other tools than Uppaal. To specify a
standard API for such a coverage module would be an opening for other tools
to utilize the work, e.g., SPIN and Uppaal TRON. Until now we have not
been able to use clocks in observers. This together with other types of cov-
erage that are not addressed yet as boundary coverage, condition coverage,
etc., will be topics for future work.
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Abstract Testing is the primary software validation technique used
by industry today, but remains ad hoc, error prone, and very expen-
sive. A promising improvement is to automatically generate test cases
from formal models of the system under test.

We demonstrate how to automatically generate real-time conformance
test cases from timed automata specifications. Specifically we demon-
strate how to efficiently generate real-time test cases with optimal
execution time i.e test cases that are the fastest possible to execute.
Our technique allows time optimal test cases to be generated using
manually formulated test purposes or generated automatically from
various coverage criteria of the model.

1 Introduction

Testing is the execution of the system under test in a controlled environment
following a prescribed procedure with the goal of measuring one or more
quality characteristics of a product, such as functionality or performance.
Testing is the primary software validation technique used by industry today.
However, despite the importance and the many resources and man-hours
invested by industry (about 30% to 50% of development effort), testing
remains quite ad hoc and error prone.

We focus on conformance testing i.e., checking by means of execution
whether the behavior of some black box implementation conforms to that of
its specification, and moreover doing this within minimum time. A promis-
ing approach to improving the effectiveness of testing is to base test gen-
eration on an abstract formal model of the system under test (SUT) and
use a test generation tool to (automatically or user guided) generate and
execute test cases. Model based test generation has been under scientific
study for some time, and practically applicable test tools are emerging
[BFG+00, Pel02, TB99, HLSU02]. However, little is still known in the con-
text of real-time systems.



An important principal problem in generating real-time test cases is to
compute when to stimulate the system and expect response, and to compute
the associated correct verdict. This usually requires (symbolic) analysis of
the model which in turn may lead to the state explosion problem. Another
problem is how to select a very limited set of test cases to be executed from
the extreme large number (usually infinitely many) of potential ones.

This paper demonstrates how it is possible to generate time-optimal test
cases and test suites, i.e. test cases and suites that are guaranteed to take
the least possible time to execute. The required behavior is specified using a
deterministic and output urgent class of Uppaal style timed automata. The
Uppaal model checking tool implements a set of efficient data-structures
and algorithms for symbolic reachability analysis of timed automata. We
then use the fastest diagnostic trace facility of the Uppaal tool to generate
time optimal test sequences. Test cases can either be selected through man-
ually formulated test purposes or automatically from three natural cover-
age criteria—such as transition or location coverage–of the timed automata
model.

Time optimal test suites are interesting for several reasons. First, reduc-
ing the total execution time of a test suite allows more behavior to be tested
in the (limited) time allocated to testing. Second, it is generally desirable
that regression testing can be executed as quickly as possible to improve the
turn around time between software revisions. Third, it is essential for prod-
uct instance testing that a thorough test can be performed without testing
becoming the bottleneck, i.e., the test suite can be applied to all products
coming of an assembly line. Finally, in the context of testing of real-time
systems, we hypothesize that the fastest test case that drives the SUT to
some state, also has a high likelihood of detecting errors, because this is a
stressful situation for the SUT to handle.

The rest of the paper is organized as follows: Section 2 discusses related
work, and Section 3 introduces our framework for testing real-time systems
based on a testable subclass of timed automata. Section 4 and 5 describe how
to encode test purposes and test criteria, and report experimental results
respectively. Section 6 concludes the paper.

2 Related Work

Relatively few proposals exist that deal explicitly and systematically with
testing real-time properties [Kho02, HNTC99, CKL98, SVD01, ENDKE98,
CO00, CL97, MMM95, NS03]. In [CO00, ENDKE98, SVD01] test sequences
are generated from a timed automata (TA) by applying variations of finite
state machine (FSM) checking sequence techniques (see eg. [LY96]) to a dis-
cretization of the state space. Experience shows that this approach suffers
seriously from the state explosion problem and resulting large number of test
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sequences. The work in [HNTC99] and [Kho02] also use checking sequences,
but is based on different structures and state verification methods. Both
assume determinism, but not output urgency. To distinguish sequences that
can always be executed to completion independent on output timing and
sequences that may be executed to completion, [HNTC99] defines may- and
must-traceability of transition sequences in a TA. The unique IO sequence
(UIOv) method is then applied to a FSM derived from the TA by simply re-
moving the clock conditions on transitions. The sequences are then checked
for their may- and must-traceability, and the procedure is re-iterated when
necessary. This may result in many iterations and in incomplete test-suites.
The work in [Kho02] assumes a further restricted TA model where all tran-
sitions with the same observable action resets the same set of clocks. The
TA is first translated into a (larger) alternative automaton where clock con-
straints are represented as set-timer and expire-timer events. Based on this,
the generalized Wp method is used to compute checking sequences.

In most FSM based approaches, tests are selected based on a fault-model
identifying implementation faults that is desired to be (or can be) detected
during testing. Little or no evidence is given to support that the real-
time fault models correspond to faults that occur frequently in practice.
Another problem is the required assumptions about the number of states in
the SUT, which in general is difficult to estimate. The coverage approach
guarantees that the test suite is derived systematically and that it provides a
certain level of thoroughness, which is important in industrial practice. It is
important to stress that this is a practically founded heuristic test selection
technique. Similarly, when time optimal sequences are generated, this is
also a level of test selection, where only the fastest to execute are selected.
Our goal is not full fault coverage that will in principle guarantee that the
SUT is correct if it passes all generated tests.

A different approach to test generation and selection is [CKL98] where
a manually stated test purpose is used to define the desired sequences to
be observed on the SUT. A synchronous product of the test purpose and
TA model is first formed and used to extract a symbolic test sequence with
timing constraints that reach a goal state of the test purpose. This symbolic
trace can be interpreted at execution time to give a final verdict. This work
does not address test suite optimization or time optimality, does not address
test generation without an explicit test purpose, and does not appear to
be implemented in a tool. [NS03] proposes a fully automatic method for
generation of real-time test sequences from a subclass of TA called event-
recording automata which restricts how clocks are reset. The technique
is based on symbolic analysis and coverage of a coarse equivalence class
partitioning of the state space.

Our work is based on existing efficient and well proven symbolic analysis
techniques of TA, and unlike others addresses time optimal testing. Most
other work on optimizing test suites, e.g [ADLU91, UUFSA99, HLSU02],
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focus on minimizing the length of the test suite which is not directly linked to
the execution time because some events take longer to produce or real-time
constraints are ignored. Others have used (untimed) model-checking tools
to produce test suites for various model coverage criteria e.g., [HLSU02].

The main contributions of the paper are 1) application of time and cost
optimal reachability analysis algorithms to the context of time-optimal test
case generation, 2) an automatic technique to generate time optimal covering
test suites for three important coverage criteria, 3) through creative use of
the diagnostic trace facility of Uppaal, a test generation tool exists that
is based on efficient and well-proven algorithms, and finally 4) we provide
experimental evidence in that the proposed technique has practical merits.

3 Timed Automata and Testing

We will assume that both the system under test (SUT) and the environment
in which it operates are modeled as TA.

3.1 Timed Automata

Let X be a set of non-negative real-valued variables called clocks, and A
t =I [O [f�g a set of input actions I and output-actions O, (denoted a? anda!), and the non-synchronizing action (denoted �). Let G(X) denote the
set of guards on clocks being conjunctions of simple constraints of the formx ./ 
, and let U(X) denote the set of updates of clocks corresponding to
sequences of statements of the form x := 
, where x 2 X, 
 2 N, and ./ 2 f�; <;=;�g1. A timed automaton (TA) over (A
t;X) is a tuple (L; `0; I; E),
where L is a set of locations, `0 2 L is an initial location, I : L ! G(X)
assigns invariants to locations, and E is a set of edges such that E � L �G(X) �A
t� U(X) � L. We write ` g;�;u����! `0 iff (`; g; �; u; `0) 2 E.

The semantics of a TA is defined in terms of a timed transition system
over states of the form p = (`; �), where ` is a location and � 2 RX�0 is
a clock valuation satisfying the invariant of `. Intuitively, there are two
kinds of transitions: delay transitions and discrete transitions. In delay

transitions, (`; �)
d�! (`; � + d), the values of all clocks of the automaton are

incremented with the amount of the delay, d. Discrete transitions (`; �)
��!

(`0; �0) correspond to execution of edges (`; g; �; u; `0) for which the guard g
is satisfied by �. The clock valuation �0 of the target state is obtained by
modifying � according to updates u. We write p 
�! as a short for 9p0: p 
�!p0; 
 2 A
t [ R�0 . A timed trace is a sequence of alternating time delays
and actions in A
t.

1To simplify the presentation in the rest of the paper, we restrict to guards with non-
strict lower bounds on clocks.
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A network of TA A1 k � � � k An over (A
t;X) is defined as the parallel
composition of n TA over (A
t;X). Semantically, a network again describes
a timed transition system obtained from those of the components by re-
quiring synchrony on delay transitions and requiring discrete transitions to
synchronize on complementary actions (i.e. a? is complementary to a!).

3.2 Uppaal and Time Optimal Reachability Analysis

Uppaal is a verification tool for a TA based modeling language. Besides
dense clocks, the tool supports both simple and complex data types like
bounded integers and arrays as well as synchronization via shared variables
and actions. The specification language supports safety, liveness, deadlock,
and response properties.

To produce test sequences, we shall make use of Uppaal’s ability to
generate diagnostic traces witnessing a submitted safety property. Currently
Uppaal supports three options for diagnostic trace generation: some trace
leading to the goal state, the shortest trace with the minimum number of
transitions, and fastest trace with the shortest accumulated time delay. The
underlying algorithm used for finding time-optimal traces is a variation of
the A�-algorithm [BFH+01, LBB+01]. Hence, to improve performance it is
possible to supply a heuristic function estimating the remaining cost from
any state to the goal state.

Throughout the paper we use Uppaal syntax to illustrate TA, and the
figures are direct exports from Uppaal. Initial locations are marked using a
double circle. Edges are by convention labeled by the triple: guard, action,
and assignment in that order. The internal � -action is indicated by an
absent action-label. Committed locations are indicated by a location with
an encircled “C”. A committed location must be left immediately as the
next transition taken by the system. Finally, bold-faced clock conditions
placed under locations are location invariants.

3.3 Deterministic, Input Enabled and Output Urgent TA

To ensure time optimal testability, the following semantic restrictions turn
out to be sufficient. Following similar restrictions as in [SVD01], we define
the notion of deterministic, input enabled and output urgent TA, DIEOU-
TA, by restricting the underlying timed transition system defined by the TA
as follows:

1. Determinism. Two transitions with the same label leads to the same
state, i.e., for every semantic state p = (`; �) and action 
 2 A
t [fR�0g, whenever p! 
p0 and p! 
p00 then p0 = p00.

2. (Weak) input enabled. At any time any input action is enabled, i.e.,
whenever p! d for some delay d 2 R�0 then 8a 2 I: p a�! .
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3. Isolated Outputs. If an output (or �) is enabled then no other input
or output transition is enabled, i.e., 8� 2 O [ f�g: 8� 2 O [ I [ f�g
whenever p! � and p! � then � = �.

4. Output urgency. When an output (or �) is enabled, it will occur im-
mediately, i.e., whenever p! �; � 2 O [ f�g then p 6! d; d 2 R�0 .

System under
test

Environment

i?

o!

Figure 1: Test Specification

We assume that the test specification is given as a closed network of
TA that can be partitioned into one subnetwork modeling the behavior of
the SUT, and one modeling the behavior of its environment (ENV), see
Figure 1. Often the SUT operates in specific environments, and it is only
necessary to establish correctness under the (modeled) environment assump-
tions; otherwise the environment model can be replaced with a completely
unconstrained one that allows all possible interaction sequences.

We assume that the tester can take the place of the environment and
control the SUT via a distinguished set observable input and output ac-
tions. For the SUT to be testable the subnetwork modeling it should be
controllable in the sense that it should be possible for an environment to
drive the subnetwork model through all of its syntactical parts (e.g. tran-
sitions and locations). We therefore assume that the SUT specification is a
DIEOU-TA, and that the SUT can be modeled by some unknown DIEOU-
TA (this assumption is commonly refered to as the testing hypothesis). The
environment model need not be a DIEOU-TA.

We use the simple light switch controller in Figure 2 to illustrate the
concepts. The user interacts with the controller by touching a touch sen-
sitive pad. The light has three intensity levels: OFF, DIMMED, and BRIGHT.
Depending on the timing between successive touches (recorded by the clockx), the controller toggles the light levels. For example, in dimmed state, if a
second touch is made quickly (before the switching time Tsw = 4 time units)
after the touch that caused the controller to enter dimmed state (from either
off or bright state), the controller increases the level to bright. Conversely,
if the second touch happens after the switching time, the controller switches
the light off. If the light controller has been in off state for a long time
(longer than or equal to Tidle = 20), it should reactivate upon a touch by
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OFF DIM BRIGHT

x<Tsw
touch?
x:=0

x>=Tsw
touch?
x:=0

x>=Tsw
touch?
x:=0

x<Tsw
touch?
x:=0

x>=Tidle
touch?
x:=0

x:=0

x<Tidle
touch?

off!

bright!

off!

dim!

bright!

dim!

Figure 2: Light Controller

touch!
z:=0

touch!

z>=Treact

z:=0

off?

dim?

bright?

touch!
z:=0,
t:=t+1

z<Tpause,
z>=Treact,
t<2
touch!
z:=0,
t:=t+1

z>=Tpause

touch!
t:=1,
z:=0

off? bright?

dim?

(a) (b)
Figure 3: Two possible environment models for the simple light switch

going directly to bright level. We leave it to the reader to verify for herself
that the conditions of DIEOU-TA are met by the model given.

The environment model shown in Figure 3(a) models a user capable of
performing any sequence of touch actions. When the constant Treact is set to
zero he is arbitrarily fast. A more realistic user is only capable of producing
touches with a limited rate; this can be modeled setting Treact to a non-zero
value. Figure 3(b) models a different user able to make two quick successive
touches (counted by integer variable t), but which then is required to pause
for some time (to avoid cramp), e.g., Tpause = 5.

3.4 From Diagnostic Traces to Test Cases

Let A be the TA network model of the SUT together with its intended en-
vironment ENV. A diagnostic trace produced by Uppaal for a given reach-
ability question on A demonstrates the sequence of moves to be made by
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each of the system components and the required clock constraints needed
to reach the targeted location. A (concrete) diagnostic trace will have the
form:

(S0; E0) ! 
0(S1; E1) ! 
1(S2; E2) ! 
2 � � � (Sn; En)

where Si; Ei are states of the SUT and ENV, respectively, and 
i are either
time-delays or synchronization (or internal) actions. The latter may be
further partitioned into purely SUT or ENV transitions (hence invisible for
the other part) or synchronizing transitions between the SUT and the ENV
(hence observable for both parties).

For DIEOU-TA a test sequence is an alternating sequence of concrete
delay actions and observable actions. From the diagnostic trace above a
test sequence, �, may be obtained simply by projecting the trace to the
ENV-component, while removing invisible transitions, and summing adja-
cent delay actions. Finally, a test case to be executed on the real SUT
implementation may be obtained from � by the addition of verdicts.

Adding the verdicts require some comments on the chosen correctness
relation between the specification and SUT. In this paper we require timed
trace inclusion, i.e. that the timed traces of the implementation are included
in the specification. Thus after any input sequence, the implementation
is allowed to produce an output only if the specification is also able to
produce that output. Similarly, the implementation may delay (thereby
staying silent) only if the specification also may delay. The test sequences
produced by our techniques are derived from diagnostic traces, and are thus
guaranteed to be included in the specification.

To clarify the construction we may model the test case itself as a TA A�
for the test sequence �. Locations in A� are labeled using two distinguished
labels, Pass and fail. The execution of a test case is now formalized as a
parallel composition of the test case automaton A� and SUT AS .S passes A� iff A� k AS 6; failA� is constructed such that a complete execution terminates in a fail

state if the SUT cannot perform � and such that it terminates in a Pass

state if the SUT can execute all actions of �. The construction is illustrated
in Figure 4.

4 Test Generation

4.1 Single Purpose Test Generation

A common approach to the generation of test cases is to first manually
formulate a set of informal test purposes and then to formalize these such
that the model can be used to generate one or more test cases for each test
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FAIL
x<=0

FAIL
x<=delay

PASS

FAIL

i_0!
x:=0

x==delay

x:=0
o_0?

o_1?

o_n?

x<delay
o_0?

Figure 4: Test case automaton for the sequence i0! � delay � o0?

purpose. A test purpose is a specific test objective (or property) that the
tester would like to observe on the SUT.

Because we use the diagnostic trace facility of a model-checker based
on reachability analysis, the test purpose must be formulated as a property
that can be checked by reachability analysis of the combined ENV and SUT
model. We propose different techniques for this. Sometimes the test pur-
pose can be directly transformed into a simple location reachability check.
In other cases it may require decoration of the model with auxiliary flag
variables. Another technique is to replace the environment model with a
more restricted one that matches the behavior of the test purpose only.

TP1: Check that the light can become bright.

TP2: Check that the light switches off after three successive touches.

TP1 can be formulated as a simple reachability property:
E<> LightController.bright (i.e. eventually in some future the lightCon-
troller automata enters location bright).

Generating the shortest diagnostic trace results in the test sequence:
20 � touch! � 0 � bright?. However, the fastest sequence satisfying the purpose
is 0 � touch! � 0 � dim? � 0 � touch! � 0 � bright?.

TP2 can be formalized using the restricted environment model2 in Fig-
ure 5 with the property E<> tpEnv.goal.

The fastest test sequence is 0 � touch! � 0 � dim? � 0 � touch! � 0 � bright? � 0 �
touch! � 0 � off ?.

2It is possible to use Uppaal’s committed location feature to compose the test pur-
pose and environment model in a compositional way. Space limitations prevents us from
elaborating on this approach.
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goal

touch!
z:=0

z<Tsw

touch!

z>=Treact,
z<Tsw

z:=0

z>=Treact,
z<Tsw
touch!
z:=0

off?

bright?dim?off? bright?off? dim? bright?dim?

Figure 5: Test Environment for TP2

4.2 Coverage Based Test Generation

Often the tester is interested in creating a test suite that ensures that the
specification or implementation is covered in a certain way. This ensures that
a certain level of systemacy and thoroughness has been achieved in the test
generation process. Here we explain how test sequences with guaranteed
coverage of the SUT model can be computed using reachability analysis,
effectively giving automated tool support. In the next subsection, we show
how to generalize the technique to generate sets of test sequences.

A large suite of coverage criteria have been proposed in the literature,
such as statement, transition, and definition-use coverage, each with its own
merits and application domain. We explain how to apply some of these to
TA models.

Edge Coverage: A test sequence satisfies the edge-coverage criterion
if, when executed on the model, it traverses every edge of the selected TA-
components. Edge coverage can be formulated as a reachability property
in the following way: add an auxiliary variable ei of type boolean (initially
false) for each edge to be covered (typically realized as a bit array in Up-

paal), and add to the assignments of each edge i an assignment ei := true; a
test suite can be generated by formulating a reachability property requiring
that all ei variables are true: E<>( e0==true and e1 ==true : : : en==true

). The auxiliary variables are needed to enable formulation of the coverage
criterion as a reachability property using the Uppaal property specification
language which is a restricted subset of CTL.

The light switch in Figure 2 requires a bit-array of 12 elements (one
per edge). When the environment can touch arbitrarily fast the generated
fastest edge covering test sequence has the accumulated execution time 28.
The solution (there might be more traces with the same fastest execution
time) generated by Uppaal is:
EC: 0 � touch! � 0 � dim? � 0 � touch! � 0 � bright? � 0 � touch! � 0 � off ? � 20 � touch! �
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0 � bright? � 4 � touch! � 0 � dim? � 4 � touch! � 0 � off ?.

Location Coverage: A test sequence satisfies the location-coverage
criterion if, when executed on the model, it visits every location of the
selected TA-components. To generate test sequences with location coverage,
we introduce an auxiliary variable si of type boolean (initially false for all
locations except the initial) for each location `i to be covered. For every

edge with destination `i: `0 g;a;u���! `i add to the assignments u si := true;
the reachability property will then require all si variables to be true.

Definition-Use Pair Coverage: The definition-use pair criterion is a
data-flow coverage technique where the idea is to cover paths in which a
variable is defined (i.e. appears in the left-hand side of an assignment) and
later is used (i.e. appears in a guard or the right-hand side of an assignment).
Due to space-limitation, we restrict the presentation to clocks, which can be
used in guards only.

We use (v; ed; eu) to denote a definition-use pair (DU-pair) for variablev if ed is an edge where v is defined and eu is an edge where v is used. A
DU-pair (v; ed; eu) is valid if eu is reachable from ed and v is not redefined in
the path from ed to eu. A test sequence covers (v; ed; eu) iff (at least) once
in the sequence, there is a valid DU-pair (v; ed; eu). A test sequence satisfies
the (all-uses) DU-pair coverage criterion of v if it covers all valid DU-pairs
of v.

To generate test sequences with definition-use pair coverage, we assume
that the edges of a model are enumerated, so that ei is the number of edgei. We introduce an auxiliary data-variable vd (initially false) with value
domain ffalseg [ f1 : : : jEjg to keep track of the edge at which variable v
was last defined, and a two-dimensional boolean array du of size jEj � jEj
(initially false) to store the covered pairs. For each edge ei at which v is
defined we add vd := ei, and for each edge ej at which v is used we add the
conditional assignment if (vd 6= false)then du[vd; ej ] := true. Note that ifv is both used and defined on the same edge, the array assignment must be
made before the assignment of vd.

The reachability property will then require all du[i; j] representing valid
DU-pairs to be true for the (all-uses) DU-pair criterion. Note that a test
sequence satisfying the DU-pair criterion for several variables can be gener-
ated using the same encoding, but extended with one auxiliary variable and
array for each covered variable.

4.3 Test Suite Generation

Often a single covering test sequence cannot be obtained for a given test
purpose or criterion (e.g. due to dead-ends in the model). To solve this
problem, we allow for the model (and SUT) to be reset to its initial state,
and to continue the test after the reset to cover the remaining parts. The
generated test will then be interpreted as a test suite consisting of a set of
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test sequences separated by resets (assumed to be implemented correctly in
the SUT).

To introduce resets in the model, we shall allow the user to designate
some locations as being reset-able. Obviously, performing a reset may take
some time Tr that must be taken into consideration when generating time
optimal test sequences. Reset-able locations can be encoded into the model
by adding reset transitions leading back to the initial location. Let xr be an
additional clock used for reset purposes, and let ` be a reset-able location.
Two reset-edges and a new location `0 must then be added from ` to the
initial location `0, i.e.,` reset !;xr:=0��������! `0(xr�Tr)

xr==Tr;�;u0��������! `0

Here u0 are the assignment needed to reset clocks and other variables in
the model (excluding auxiliary variables encoding test purpose or coverage
criteria 3). If more than one component is present in either the SUT-model
or environment model, the reset-action must be communicated atomically
to all of them. This can be done using the committed location feature of
Uppaal. Further note that it may be possible to obtain faster (covering)
test suites, if more reset-able locations are added, obviously depending on
the time required to perform the reset, at the expense of increased model
size.

4.4 Environment Behavior

A potential problem of the techniques presented above is that the generated
test sequences may be non-realizable, in that they may require the environ-
ment of SUT to operate infinitely fast. In general, it is only necessary to
establish correctness of SUT under the (modeled) environment assumptions.
Therefore assumptions about the environment can be modeled explicitly and
will then be taken into account during test sequence generation. In the fol-
lowing, we demonstrate how different environment assumptions affect the
generated test sequences.

Consider an environment where the user takes at least 2 time units be-
tween each touch action; such an environment can be obtained by setting
the constant Treact to 2 in Figure 3a. The fastest test sequences become:

TP1: 0 � touch! � 0 � dim? � 2 � touch! � 0 � bright?

TP2: 0 � touch! � 0 � dim? � 2 � touch! � 0 � bright? � 2 � touch! � 0 � off ?.
Also reexamine the test suite EC generated by edge coverage, and com-

pare with the one of execution time 32 generated when Treact equals 2:
EC’: 0 � touch! � 0 � dim? � 4 � touch! � 0 � off ? � 20 � touch! � 0 � bright? � 4 �

touch! � 0 � dim? � 2 � touch! � 0 � bright? � 2 � touch! � 0 � off ?.

3In the encoding of DU-pair coverage, the variables vd should be set to false at resets.

46



When the environment is changed to the pausing user (can perform 2
successive quick touches after which he is required to pause for some time:
reaction time 2, pausing time 5), the fastest sequence has execution time
33, and follows a completely different strategy, that ensures that one of the
additional waiting times Tpause is overlapped with a position where the tester
needed to wait anyway.

EC”: 0 � touch! � 0 � dim? � 2 � touch! � 0 � bright? � 5 � touch! � 0 � dim? � 4 �
touch! � 0 � off ? � 20 � touch! � 0 � bright? � 2 � touch! � 0 � off ?.

5 Experiments

In the previous section we presented techniques to compute time optimal
covering test suites. In the following we show empirically that the perfor-
mance of our technique is sufficient for practically relevant examples, and
to indicate how heuristic search methods can be used to compute optimal
or near optimal test cases from very large models. We are concerned with
both the execution time of the generated test sequence, and the time and
memory used to generate it.

5.1 The Touch Sensitive Switch

x<=epsilon

x<=delta

grasp?

x:=0
release?

release?

touch!

x==epsilon

starthold!
x==delta

release?

endhold!

Figure 6: Interface Automaton

Most of the experiments reported here are based on a model of a touch
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sensitive light switch (TSS). It has Max levels of brightness (0 corresponds
to off). The lamp is operated by touching its wire, i.e. the wire can be
grasped and released. The behavior of the controller can be expressed as
follows: If the light is on, then a single grasp and release of the wire, will
switch off the light. If the light is off, then a single grasp and release will
switch on the light at the previous brightness level. Continuous holding
of the wire increases the brightness (resp. decreases) if it was previously
decreasing (resp. increasing). Once the maximum (resp. minimum) level is
reached the brightness level decrease (resp. increase).

x<=delay x<=delay
endhold? starthold?

OL:=L,x:=0,on:=1

L<Max,
x==delay

L:=L+1,
x:=0

L>0,
x==delay

L:=L-1,
x:=0

starthold?
L:=OL,
x:=0,
on:=1

endhold?L==Max,
x==delay

L==0,
x==delay

Figure 7: Dimmer Automaton

In reality a user can only perform two actions on the wire: grasp and
release, and the time-separation between the two events is translated into
either nothing (if the separation is very short), touch if it is short, and
into a starthold and endhold pair if the separation is long. In the Up-

paal-model this translation is done by the interface component, shown in
Figure 6. The dimmer component shown in Figure 7 reacts to starthold

and endhold actions with a dimming effect. When changing the brightness
level L, it is assumed that some maximum time (Delay) will elapse between
two levels. The switch component shown in Figure 8(a) reacts to touch

events by switching the light on to the previous light level OL, or off. The
user is modeled in Figure 8(b).

We vary the model in two ways. First, the user may be patient or
impatient. The impatient user insists on requiring interaction at least every
Wait = 15 time units controlled by the invariant in user – this makes it
harder for the user to change the intensity because he ”gives up” the hold
after just increasing the light one level. This invariant is removed in the
patient user. Secondly, we vary the number of light levels from Max = 10
and up.

Table 9 shows the optimal execution times (in time units) for test suites
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on==0
touch?

L:=OL,
on:=1

on==1
touch?

OL:=L,
L:=0,
on:=0

z<=Wait

release!
z:=0

grasp!
z:=0

Figure 8: Switch (left) and User (right) Automata.

Impatient Patient

Coverage Exec- Suite Exec- Suite
Criterion time length time length

LocationDimmer 20 12 20 12
LocationDimmer, Switch, Interface 25 17 25 17
EdgeDimmer 253 176 53 38
EdgeInterface 15 14 15 14
EdgeDimmer, Switch, Interface 263 188 63 50
EdgeInterface+LocationDimmer 25 19 25 19
Def-Useon 40 34 40 34
Def-UseOL 45 34 45 34

Table 9: Optimal execution time and suite length for various coverage cri-
teria.

generated from different coverage criteria of the TSS, or selected subsets of
components thereof, and the length (number of transitions) of the generated
test suite. We notice that the patient user results in shorter and faster traces
in our experiments.

5.2 System Size and Environment Behavior

To see how our technique scales, we increase the number of light levels in
the TSS model. The result, listed in Table 10, shows that the particular
example scales well: execution time (in time units), generation time, and
memory usage for the impatient user increase essentially linearly with the
number of light-levels. This is not surprising as the system size is varied by
adjusting a counter, and not the number of parallel components.

It is more interesting to compare the patient and impatient user. Con-
sider the system with 50 light levels. The optimal execution time for the
impatient user is high (1183 time units), the reason being that the light
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Impatient Patient

Le- Exec- Gen- Mem Exec- Gen- Mem
vels time time(s) (MB) time time (s) (MB)

10 263 2.06 9.1 63 3.19 10.1
20 493 3.68 11.4 93 12.40 20.1
30 723 5.29 12.6 123 28.17 40.4
50 1183 8.59 17.4 183 78.30 86.9
100 2333 16.76 28.0 333 339.52 314.9
200 4633 34.45 44.3 633 1494.35 1233.8
400 9233 66.03 77.1 N/A >7000 >4180.6

Table 10: Cost of obtaining edge coverage of the TSS with increasing light
levels.

level is increased only by one before he gives up, and starts the hold action
again. Obtaining coverage therefore requires many interactions (trace of
length 828). In contrast, the optimal execution time for the patient user 183
time units (and the trace length is 130). If we compare the generation time,
it can be seen that it is much cheaper to compute the (very long) optimal
solution for the impatient user than to compute the (short) optimal solution
for the patient user.

Although this is surprising, there is a potential general explanation for
this. The patient user environment poses no restrictions on the solution,
and the test generator has complete freedom to find the optimal solution.
This means that test generator has to evaluate all possible behaviors of this
liberal environment. The impatient user is a more restricted environment,
thus containing less possible behaviors. Therefore, searching the more liberal
environment takes longer but also produces faster solutions.

There are two lessons to be learned. First, the relevance of an accurate
model of the environment assumptions. Secondly, the use of the environment
model to control test generation: restrict the environment to handle larger
systems, but at the cost of more expensive solutions.

We have also created a DIEOU-TA version of the Philips audio control
protocol [BPV94] frequently studied in the context of model checking. The
system consists of a sender and a receiver communicating over a shared bus.
The sender inputs a sequence of bits to be transmitted, Manchester encodes
them, and transmits them as high and low voltage on the bus. Further, it
checks for collisions by checking that the bus is indeed low when it is itself
sending a low signal. The receiver is triggered by low-to-high transitions on
the bus, and decodes the bits based on this information.

Table 11 summarizes the results. The first row contains results for the
protocol tested with an environment consisting of a bus that may sponta-
neously go high to emulate a collision, and a sender buffer producing any
legal input-bit sequence. The second row shows results for a receiver tested

50



Coverage Execution Generation Memory
Criterion time (�s) time (s) usage (KB)

EdgeSender 212350 2.2 9416
EdgeReceiver 18981 1.2 4984
EdgeSender,Bus,Receiver 114227 129.0 331408

Table 11: Results for the Philips audio protocol.

First Sol. Optimal Sol.

Search Exec- Gen- Memory Gen- Mem
order time time (s) (MB) time (MB)

BF 123 27.91 40.8 N/A N/A
DF 791 0.15 4.9 N/A N/A
C BF 123 30.44 42.6 31.31 43.3
C DF 791 0.15 6.5 248.64 127.0
C BF R 123 30.70 42.6 30.87 42.9
C DF R 791 0.15 6.4 21.62 32.1
C MC 123 25.87 39.3 26.19 39.5
C MC R 123 3.23 13.0 3.32 13.1

Table 12: Cost of edge coverage of TSS (Max =30) using different search
orders.

in an environment consisting of a bus, and a buffer to hold the received bits.
The third row is the results for the receiver tested in an environment con-
sisting of a sender component with sender buffer, a bus, and receiver buffer.
Thus the last row represents a rather large system. In all cases the time
optimal covering test sequence could be computed in reasonable time.

5.3 Search-order and Guiding

Uppaal allows the state space to be traversed in several different orders with
different performance characteristics w.r.t. execution time of the generated
test suite and the size of the system that can be handled. In particular, theA� algorithm has potential significant impact. We here demonstrate how it
can be employed for test generation to efficiently compute edge coverage in
the TSS model.

The measured numbers are listed in Table 12. BF (DF) denotes breadth-
first (depth-first) search order. The optimal execution time remains identical
at 123 time units for all search orders. We note that using depth-first search
during time optimal analysis (C DF) Uppaal produces (many) solutions
quickly, but consumes long time to ultimately find the optimal one. During
time optimal reachability analysis Uppaal (symbolically) computes for each
reached state the time C accumulated so far. Let Cg be the fastest time to
a goal state found so far. When another state is found during exploration
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with an accumulated time C � Cg further exploration from that state is
unnecessary, and the search can be pruned. Minimum accumulated time-
first (MC) explores states ordered by their minimum accumulated time. To
increase the efficiency further, it is possible to provide a safe estimate of the
time that remains R from a given state to the goal state. Pruning can then
be performed when a state is found with C +R � Cg. In Table 12 a search
order combined with a remaining estimate is suffixed by an “ R”.

It is easy to see in the dimmer component that the most time consuming
edge to reach is the edge with guard L = Max . As estimate of remaining
time, we use (Max �L)� delay if level Max = L has not been reached, and
0 otherwise. Intuitively, the remaining time equals at least the number of
light levels from Max value times the time to increase the light one level
(delay). This formula has the feature that it can prune searches that turns
back to lower light levels.

Compared to C BF minimum accumulated time first search (C MC)
offers slightly improved generation time and memory usage. However, en-
abling remaining time estimate combined with this search order (C MC R)
has a dramatic positive effect, and outperforms any of the other evaluated
search orders.

6 Conclusions and Future Work

In this paper, we have presented a new technique for generating timed test
sequences for a restricted class of timed automata. It is able to generate
time optimal test sequences from either a single test purpose or a coverage
criterion using the time optimal reachability feature of Uppaal. Though
a number of examples we have demonstrated how our technique works and
performs. We conclude that it can generate practically relevant test se-
quences for practically relevant sized systems. However, we have also found
a number of areas where our technique can be improved.

The DIEOU-TA model is quite restrictive, and a generalization will ben-
efit many real-time systems. Especially, we are working on loosening the
output urgency requirement. It may also be interesting to formulate cover-
age criteria that takes clock constraints into consideration.

Adding the required annotations for various coverage criteria by hand,
and manually formulating the associated reachability property is tedious and
error prone. We are working on a tool that performs these tasks automat-
ically. Finally, we have found that the bit-vector annotations for tracking
coverage and remaining time estimates may increase the state space signifi-
cantly, and consequently also generation time and memory. The extra bits
does not influence model behavior, and should therefore be treated differ-
ently in the verification engine. We are working on techniques that ignores
these bits when possible, and that takes advantage of the coverage bits for
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pruning states with “less” coverage.
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Abstract In this paper, we describe how the real-time verification
tool Uppaal has been extended to support automatic generation of
time-optimal test suites for conformance testing. Such test suites are
derived from a network of timed automata specifying the expected
behaviour of the system under test and its environment. To select
test cases, we use coverage criteria specifying structural criteria to
be fulfilled by the test suite. The result is optimal in the sense that
the set of test cases in the test suite requires the shortest possible
accumulated time to cover the given coverage criterion.

The main contributions of this paper are: (i) a modified reachability
analysis algorithm in which the coverage of given criteria is calculated
in an on-the-fly manner, (ii) a technique for efficiently manipulating
the sets of covered elements that arise during the analysis, and (iii) an
extension to the requirement specification language used in Uppaal,
making it possible to express a variety of coverage criteria.

1 Introduction

In [HLN+04], we have presented a technique for generating time-optimal
test suites from timed automata specifications using Uppaal [LPY97]. The
technique describes how to annotate models with auxiliary variables so that
test sequences from manually formulated test purposes or coverage criteria
can be derived by reachability analysis. The result of the analysis is a
diagnostic trace described as an alternating sequence of input actions and
delays, which can be transformed into a (set of) test sequence(s) describing
how to stimulate the system to fulfill the test criterion.

The tool presented in this paper, is a prototype version of the Uppaal

tool based on the same technique but with the following extensions:� a modified reachability analysis algorithm in which the coverage of a
given criterion is collected during the reachability analysis performed
by Uppaal, making manual model annotation superfluous.� an implementation for efficiently representing the sets of covered ele-
ments that arises during the analysis. With the knowledge that such
sets are always monotonically increasing along any trace of an automa-
ton, it is safe to perform some pruning in the reachability analysis



normally not possible in model-checking (e.g. in case ordinary data-
variables are used to annotate the model).� a set of keywords representing coverage criteria extending the require-
ment specification language of Uppaal.

The rest of this paper is organized as follow: in the next section, we
describe the modeling language timed automata and the tool Uppaal. In
Section 3 we describe the algorithm implemented in the tool, in Section 4 we
present the tool itself, and in Section 5 experiments are presented. Section
6 concludes the paper.

2 Preleminaries

We will use a restricted type of timed automata [AD94], extended with finite
domain variables, called DIEOU-TA [HLN+04] to specify the system under
test (SUT). The environment of the SUT is specified in the same way but
without the DIEOU-TA restriction.

2.1 Timed Automata

A timed automaton is a finite state automaton extended with real-valued
clocks. Let X be a set of non-negative real-valued clocks, and A
t = I [O[f�g a set of input actions I (denoted a?) and output-actions O (denoted a!),
and a distinct non-synchronizing (internal) action � . Let G(X) denote the
set of guards on clocks being conjunctions of simple constraints of the formx ./ 
, and let U(X) denote the set of updates of clocks corresponding to
sequences of statements of the form x := 
, where x 2 X, 
 2 N, and ./ 2 f�; <;=;�g1. A timed automaton (TA) over (A
t;X) is a tuple (L; `0; I; E),
where L is a set of locations, `0 2 L is an initial location, I : L ! G(X)
assigns invariants to locations, and E is a set of edges such that E � L �G(X) �A
t� U(X) � L. We shall write ` g;�;u����! `0 iff (`; g; �; u; `0) 2 E.

The semantics of a TA is defined in terms of a timed transition system
over states of the form p = (`; �), where ` is a location and � 2 RX�0 is
a clock valuation satisfying the invariant of `. Intuitively, there are two
kinds of transitions: delay transitions and discrete transitions. In delay

transitions, (`; �)
d�! (`; � + d), the values of all clocks of the automaton are

incremented with the amount of the delay, d. Discrete transitions (`; �)
��!

(`0; �0) correspond to execution of edges (`; g; �; u; `0) for which the guard g
is satisfied by �. The clock valuation �0 of the target state is obtained by
modifying � according to updates u. We write p 
�! as a short for 9p0: p 
�!

1To simplify the presentation in the rest of the paper, we restrict to guards with non-
strict lower bounds on clocks.
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p0; 
 2 A
t [ R�0 . A timed trace is a sequence of alternating time delays
and actions in A
t.

A network of TA A1 k � � � k An over (A
t;X) is defined as the parallel
composition of n TA over (A
t;X). Semantically, a network again describes
a timed transition system obtained from those of the components by re-
quiring synchrony on delay transitions and requiring discrete transitions to
synchronize on complementary actions (i.e. a? is complementary to a!).

2.2 Deterministic, Input Enabled and Output Urgent TA

To ensure testability in the context of time, we require the following set of
(sufficient) semantic restrictions on the SUT model. Following similar re-
strictions as in [SVD01], we define the notion of deterministic, input enabled
and output urgent TA, DIEOU-TA [HLN+04], by restricting the underlying
timed transition system defined by the TA as follows:

1. Determinism. For every semantic state p = (`; �) and action 
 2A
t [ fR�0g, whenever p! 
p0 and p! 
p00 then p0 = p00.
2. (Weak) input enabled. Whenever p! d for some delay d 2 R�0 then8a 2 I: p a�! .

3. Isolated Outputs. 8� 2 O [ f�g: 8� 2 O [ I [ f�g whenever p ! �
and p! � then � = �.

4. Output urgency. Whenever p! �; � 2 O [ f�g then p 6! d; d 2 R�0 .

2.3 UPPAAL and Testing

Uppaal [LPY97] is a tool for modeling and analysis of real-time systems2.
Given a network of timed automata, extended with finite domain data vari-
ables, Uppaal can check if a given (symbolic) state is reachable from the
initial state or not. If the state is reachable, the tool produces a diagnos-
tic trace with action- and delay-transitions showing how the state can be
reached.

It has been shown in [HLN+04] how to obtain a test sequence from
a diagnostic trace of a DIEOU-TA. Given a network of timed automata
consisting of a part modelling the system under test (SUT) and a part
modeling the environment (ENV). The idea is to project the diagnostic trace
to the visible actions between the SUT and the ENV part, and to sum up
the delay transitions in between visible actions. The resulting test sequence
can be converted to a test case which signals fail whenever the SUT does
not behave according to the SUT model, i.e. produces unexpected output,
or correct output at the wrong time-point.

2See the web site http://www.uppaal.com/ for more details about the Uppaal tool.
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Pass:= ;
Wait:= f((l0;D0); C0)g
while Wait 6= ; do

select ((l;D); C) from Wait

if ((l;D); C) j= 'C then return “YES”
if for all ((l;D0); C 0) in Pass: D 6�D0 _ C5 C 0 then

add ((l;D); C) to Pass

for all ((ls;Ds); Cs)
such that ((l;D); C);
 ((ls;Ds); Cs):
add ((ls;Ds); Cs) to Wait

return “NO”

Figure 1: An abstract algorithm for symbolic reachability analysis with
coverage.

The technique presented in [HLN+04] shows how to transform a given
test purposes or coverage criteria to annotations of the SUT and ENV mod-
els. For example, it shows the annotations and auxiliary variables needed
so that definition-use pair coverage [FW88] be formulated as a reachability
problem. The result is a diagnostic trace from which a set of test cases (a
test suite) can be extracted which satisfies the definition-use pair coverage
criteria in minimal time.

Whereas this is a viable technique, it is tedious and error prone in prac-
tice. The extra auxiliary variables also increase the size of the state space
and thus the time and space required to perform the analysis. Since the
extra variables do not influence the behaviour of the model, they should be
treated differently. In the next section, we show how to move the auxiliary
variables from the model into data structures in the analysis algorithm, and
how they can be handled more efficiently.

3 Test Generation Algorithm

The reachability algorithm in Uppaal is essentially a forward on-the-fly
reachability algorithm that generates and explores the symbolic state space
of a timed automata network. In the following we describe how the algorithm
has been modified to check if a given coverage criteria is satisfied in a timed
automata model.

3.1 Test Sequence Generation

The algorithm modified for generating test sequences is illustrated in Figure
4. The algorithm explores symbolic states of the form (l;D), where D
is a zone (or DBM [Dil89]) representing a convex set of clock valuations,
extended with a coverage set C representing the elements covered when the
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state is reached. We use (l;D) ; (l0;D0) to denote a transition in the
symbolic state space (see e.g. [BFH+01, LLPY97] for a description of the
symbolic semantics implemented in Uppaal). The algorithm terminates
when the property 'C is satisfied by a reached state. It is then possible to
compute a diagnostic trace starting in the inital state and showing how to
reach a state satisfying 'C (see e.g. [LPY95]).

The algorithm in Figure 4 is similar to the ordinary reachability algo-
rithm used in Uppaal. The most significant modification is the addition of
a coverage set C to the symbolic states. The particular representation of a
coverage set depends on the coverage criteria mentioned in 'C . The current
implementation allows for conjunctions of atomic coverage criteria of the
form jAlj � 
, jAej � 
, or jxduj � 
, where 
 2 N, � 2 f>;�g, and jAlj
and jAej denotes the number of covered locations and edges in automatonA respectively, and jxduj the number of covered definition-use pairs of data
variable x.

In the algorithm, the coverage sets are initiated to C0 (line 2), checked
for inclusion (“E” on line 6), and then successors are generated (line 9). We
define ((l;D); C) ;
 ((ls;Ds); Cs) iff (l;D) ; (ls;Ds) and C is updated toCs as follows:� location coverage (in case '
 contains an atomic coverage criterion of

the form jAlj � 
): Cs = C [ f lsg. In this case C0 = fl0g and C E C 0
iff C � C 0.� edge coverage (in case '
 contains an atomic coverage criterion of the
form jAej � 
): Cs = C [ feg, where e 2 E is the edge from which
the transition (l;D) ; (ls;Ds) is derived. In this case C0 = fg andC E C 0 iff C � C 0.� definition-use pair coverage on variable x (in case '
 contains an
atomic coverage criterion of the form jxduj � 
): In this case C =hF;Ui, where F 2 E [ f?g, and U is a coverage set of definition-use
pairs of the form hei; eji, where ei; ej 2 E. We define Cs = hFs; Usi:Fs =

� e if x is defined on eF otherwiseUs =

� U [ hF; ei if F 6=? and x is used on eU otherwise

where e 2 E is the edge from which the transition (l;D); (ls;Ds) is
derived. Initially C0 = h?; fgi and hF;Ui E hF 0; U 0i iff (F = F 0 ^ U �U 0).

Thus, to check for location coverage the coverage set C is simply storing
the set of locations that are visited when a symbolic state is reached. In a
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network of timed automata, the update of C can easily be modified to check
for coverage of a subset of the automata in the network. The case for edge
coverage is similar. Definition-use pair coverage is checked by keeping track
of active definitions in set F and covered DU-pairs in the set U .

Note how the coverage sets are checked for inclusion. Intuitively, the
(symbolic) state ((l;D); C) does not need to be further examined if another
state ((l;D0); C 0) is reached that contains all time-assignments, i.e. D � D0,
and covers the same or more elements, i.e. C E C 0. This means that states
with smaller coverage will not be further explored which is the reason for
allowing only checks of lower bounds of the size of the coverage sets. The
advantage is of course that the number of explored states becomes smaller,
leading to faster termination of the algorithm (see Section 5 for more details).

To check ((l;D); C) j= 'C in the algorithm is straight-forward. The
value of jAlj or jAej is simply the number of elements in C. For definition-
use pair coverage, where C is a pair of the form hF;Ui the value of jxduj is
the number of elements in the set U .

3.2 Test Suite Generation

In [HLN+04] we describe a technique for generating test suites (set of test
sequences) covering a given test criterion. The idea is to annotate the model
with edges allowing the model to reset to its initial state (an updating the
auxiliary variables accordingly). We now describe how the algorithm shown
in Figure 4 (and Figure 2 below) can be modified in a similar way.

Assume a predicate R � L � f0; 1g which is true for all automaton
locations that can be reset. In the algorithm, it suffices to insert the line

if R(l) then add ((l0;D0); C) to Wait

between line 8 and 9 of the algorithm of Figure 4. The case of definition-use
pair coverage is the same except that F = fg to indicate that no active
definitions have yet been reached from the initial location.

It should be obvious that the effect of adding the line corresponds to
allowing the system to reset to its initial symbolic state (l0;D0) but with
the coverage collected before the reset. When Uppaal returns a diagnostic
trace the output is interpreted as a set of traces separated by the reset
operations (which can be made visible in the diagnostic trace).

3.3 Time Optimal Test Suites

The standard reachability analysis algorithm implemented in Uppaal has
been extended to compute the trace with minimum time-delay satisfying a
given reachability property [BFH+01]. In the same way as described above,
the algorithm for time-optimal reachability can be extended to compute
time-optimal test sequences. The resulting abstract algorithm is shown in
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Cost:= 1
Pass:= ;
Wait:= f((l0;D0); C0)g
while Wait 6= ; do

select ((l;D); C) from Wait

if ((l;D); C) j= 'C and min(D) < Cost

then Cost := min(D)
if for all ((l;D0); C 0) in Pass: D06vD _ C5C 0 then

add ((l;D); C) to Pass

for all ((ls;Ds); Cs)
such that ((l;D); C);
 ((ls;Ds); Cs):
add ((ls;Ds); Cs) to Wait

return Cost

Figure 2: An abstract algorithm for symbolic time-optimal reachability anal-
ysis with coverage.

Figure 2. It should be noticed that the DBMs D used in the algorithm
for time-optimal reachability is different from the one in ordinary symbolic
reachability. For time-optimal reachability an extra clock is used that is
never reset. The minimum value of this clock is the minimum time it takes
to reach the state. We will not discuss this in detail here, but refer the
reader to [BFH+01] for more details.

In [BFH+01], it is also shown how the algorithm can be extended with
a set of techniques inspired by branch and bound algorithms [AC91]. Some
of these extensions can also be applied when generating time-optimal test
sequences, but it remains to be investigated in detail.

4 Implementation

In the algorithm(s) described in the previous section, the symbolic states
contain a component representing the items covered in the path reaching
the state. In the case of definition-use pair coverage, it also contains more
information like the F set. In this section we will describe how the coverage
sets have been implemented as bitvectors (in C++) in the algorithm.

We use bitvectors v 2 f0; 1gn to implement a set C of n items, and
associate a natural number i to each item to be covered. Then v[i] = 1 if
item i is in the set. This is exactly the standard bitvector representation of
sets. In order to improve efficiency, we use dynamic bitvectors and number
the items as they are explored. For example, in the case of location coverage
the locations are numbered in the order they are explored by the algorithm,
and the length of the bitvector grows as new locations are explored.
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4.1 Overview

An overview of the implemented coverage module is shown in Figure 3. The
functionality of the module is to calculate (bitvector representation of) Qs
in a transition like ((l;D); Q);
 ((ls;Ds); Qs). The input to the module is
the coverage set C, a symbolic transition, and the new symbolic state, i.e.; (ls;Ds). The example shown in the Figure 3 calculates Qs for location
coverage of an automaton P1.

The module consists of three layers: the combined layer, the atomic layer,
and the mapping table layer. The combined layer combines the coverage
from the atomic terms and updates the set Q to Qs. The atomic layer use
the mapping tables to convert the coverage items found in the step to a
bitvector. The layers in the architecture are fixed, but the configuration of
the atomic layer differs, depending on the atomic coverage criteria used in
the analysed property '
.
4.2 Layers

In general, the AllCoverage module consults one objects in the atomic layer
for each atomic coverage term found in '
. In the illustrated example, there
is only one atomic coverage — location coverage in automaton P1. When
an object in the atomic layer is consulted it is given a symbolic transition
and a new state of the form; (ls;Ds) and produces a bitvector Æi with the
bits set that correspond to items covered by the given transition and state.
The successor set Qs is created by bitwise-or of the old set Q and Æi for all
atomic objects. Thus, in the general case Qs = Q [ (

Si Æi).
An object in the atomic layer is created for each atomic coverage de-

scribed by the search property '
. In case of location or edge coverage it is
instantiated with the corresponding type location or edge, and an automatonA. In case of definition-use pair, the object is instantiated with the type
definition-use and a variable name.

4.3 Dynamic Size of Bitvectors

The sets Q are saved with the symbolic state (l;D) as a bitvector that dy-
namically increases in size when new items are explored. Since long bitvec-
tors are more expensive to manipulate we avoid to associate bits with items
that have not yet been (or never will be) used. That is, the coverage items
are numbered when they are first generated.

In the mapping table layer each coverage type has a table that associates
the items with a unique bitnumber. To make the bitnumbers unique a global
counter is used. The counter is incremented whenever a new item is found.
In the example in Figure 3, the location is associated with the (bit)number
2 and thus the bitvector “10” is generated.
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Bit := 2


? 66? n atomic coveragesls; P1

Æ1 := 10


AllCoverage

Combined layer

Atomic layer

Mapping table

Location

Location table

1

; (ls;Ds)

Coverage P1

- -Cs := C [ Æ1 [ � � � [ ÆnC;; (ls; Ds)

Figure 3: Architecture of the coverage module. Location coverage example
instantiation.

5 Experiments

In order to evaluate the efficiency of the algorithm presented in this paper,
we apply it to generate test suites from a model of protocol by Philips
[BGK+96]. The protocol sends Manchester encoded bitstreams over a bus
link, and detects collisions if two senders try to send that the same time-
point. We use the model presented by Bengtsson et.al. in [BGK+96]. The
model consists of seven timed automata. Four of the automata model the
components of the protocol: two sender automata (SA and SB) , a receiver
automaton R, and a wire automaton wire. Three of the automata model the
environment of the protocol: two message automata providing the senders
with messages (messageA and messageB), and an automaton checking the
correctness of the received messages (check).

Table 4 shows the time and space required to generate time-optimal test
suites with an coverage extended prototype version of Uppaal implementing
the algorithm described in Sections 3 and 4. The experiments have been
performed on a Sun UltraSPARC-II 450MHz. Column “Pruned” gives the
data when using the algorithm presented in this paper. Column “Original”
gives the data when using bitvectors but not the extra pruning possible due
to the monotonicity of the coverage sets (i.e. the effect of �). For both
versions, we have used edge coverage criterion on two or three automata.
We note that the reduction is 50 to 58% in time and 30 to 35% in memory
consumption for this example.

67



Original Pruned

Coverage criteria Exec- Mem Exec- Mem
time MB time MBjRej ^ jSAej 8.91 18.5 4.43 13.0jRej ^ jSAej ^ jSBej 14.61 25.5 6.06 16.5

Table 4: Measurements on Philips audio-control protocol with bus-collision.

6 Conclusion

In this paper, we have described how the real-time verification tool Uppaal

has been extended for test-case generation. In particular, we have extended
the symbolic reachability analysis algorithm of the tool to generate traces
satisfying simple coverage criteria, which can be used as test sequences or
suites to test real-time systems.

The presented algorithm uses monotonically growing sets represented at
bit-vectors to collect information about covered items. The monotonicity of
these sets and the type of reachability properties checked for, allows for some
pruning that normally can not be done. In our initial experiments, we have
found the gained reduction in time and space consumed by the algorithm to
be 50 to 58% and 30 to 35% respectively.

The current language for describing coverage criteria is very limited. As
future work we will develop a more generic language which is not limited to
a predefined set of criteria. Another possible future direction of work is to
introduce monotonic variables in the modelling language of Uppaal. Such
variables might be useful in specifications of other problem areas such as
e.g. scheduling and other planing problems.
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Specifying and Generating Test Cases Using Ob-
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Abstract We present a technique for specifying coverage criteria and
a method for generating test suites for systems whose behaviours can
be described as extended finite state machines (EFSM). To specify
coverage criteria we use observer automata with parameters, which
monitor and accept traces that cover a given test criterion of an EFSM.
The flexibility of the technique is demonstrated by specifying a number
of well-known coverage criteria based on control- and data-flow infor-
mation using observer automata with parameters. We also develop
a method for generating test cases from coverage criteria specified as
observers. It is based on transforming a given observer automata into
a bitvector analysis problem that can be efficiently implemented as an
extension to an existing state-space exploration such as, e.g. SPIN or
Uppaal.

1 Introduction

Model based test case generation has in recent years been developed as a
prominent technique in testing of reactive software systems. A model serves
both the purpose of specifying how the system should respond to inputs from
its environment, and of guiding the selection of test cases, e.g., using suitable
coverage criteria. Typical notations for such models are state machines in
some form, often extended with data variables. Test cases can be selected
as individual “executions” of the model, checking that the outputs from the
system under test (SUT) conform to those specified by the model.

There is a large literature and several tools (e.g., [dZ99, LBV02, SEG+98,
MA00, dBRS+00]) for generation of test cases from extended state machine
models (EFSMs). In typical approaches, the selection of test cases follows
some particular coverage criterion, such as coverage of control states, edges,
etc., or using an explicitly given set of test purposes [FJJV97, RdBJ00].
When the model contains data variables, constraint solving techniques can
be used to find actual values of input parameters that drive the execution
in a desired direction [LBV02, NS03, Meu00].

Since different coverage criteria are suitable in different situations, and
satisfy different constraints on fault detection capability, cost, information
about where potential faults may be located, etc., it is highly desirable that



a test generation tool is able to generate test suites in a flexible manner,
for a wide variety of different coverage criteria. In other words, a test
generation tool should accept a simple specification of a coverage criterion,
given in a language that can easily specify a large set of coverage criteria,
and be able to generate test suites accordingly.

In this paper, we present a technique for specifying coverage criteria in a
simple and flexible manner, and a method for generating test cases according
to such coverage criteria. The technique fits well as an extension of a state-
space exploration tool, such as, e.g., SPIN [Hol97] or Uppaal [LPY97],
which performs enumerative or symbolic state-space exploration. It can
also be used to generate monitors that measure the coverage of a specific
test suite by monitoring the test execution.

In our technique, a coverage criterion is given as a set of coverage items,
each of which represents an interesting structural property of the EFSM
which should be examined by a test suite. A coverage item can state that a
particular state, edge, or similar, should be visited, it can be an explicit test
purpose, etc. Each coverage item is specified by an observer, which observes
the execution of a test case, and reports acceptance when the test case has
covered the coverage item that it specifies. For instance, a coverage item
stating that a control state l of an EFSM model should be visited simply
observes how the EFSM executes and reports acceptance when it enters l.

A typical coverage criterion is given as a (often rather large) set of cov-
erage items. An important mechanism to facilitate specification of many
coverage criteria is to allow parameterization of observers. In this way, one
can specify a set of coverage items parameterized over, e.g., control states,
data variables, edges, etc. of the EFSM model. Using this simple and gen-
eral mechanism, we can specify most of the coverage criteria that have been
used in the literature, and also tailor coverage to specific features of a par-
ticular SUT. For instance, if a particular interface is very error prone, we
can specify a coverage criterion which requires all possible interleavings of
interactions on that interface to be exhibited in a test suite.

A specification of a coverage criterion can be used for test suite genera-
tion using a state-space exploration tool. First, we superpose the coverage
observers onto the EFSM, then we search for a test sequence or set of test
sequences in which as many observers as possible report acceptance. For pa-
rameterized observers, we can record the achieved coverage by a (typically
small) set of bitvectors, indexed by parameter values, which concisely rep-
resent the states of a large set of parameterized observers, in analogy with
bitvector analysis in data-flow analysis, e.g., [Muc97]. The same machinery
can also be used to monitor the achieved coverage of a certain test suite.

The remainder of the paper is structured as follows. We present EFSMs
in the next section, and observers in Section 3. In Section 4, we show how
our definitions of coverage can be used for test case generation, and report
on a partial implementation of the technique. Section 5 concludes the paper.
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Related Work. Most related work on test case generation from mod-
els of reactive systems employ some rather specific selection of coverage
criteria. Explicitly given test purposes have been considered, both enumer-
ative [FJJV97] and symbolic [RdBJ00]. Test purposes in these works can in
some sense be regarded as coverage observers, but are not used to specify
more generic coverage criteria and do not make us of parameterization, as
in our work. For finite-state machines and EFSMs, several approaches focus
on particular coverage criteria, e.g., Bouquet and Legeard [BL03] synthe-
size test cases corresponding to combinations of choices of control flow and
boundary values of state variables, Nielsen and Skou [NS03] generate test
cases that cover reachable symbolic states. These coverage criteria can be
specified as observers in our framework.

Some approaches present more flexible techniques for specifying a variety
of coverage criteria. Hong et al [HLSU02, HCL+03] describe how flow-based
coverage criteria can be expressed in temporal logic. A particular coverage
item is expressed in CTL, and a model checker generates a trace which cov-
ers the coverage item. In our approach, we use observers instead of temporal
logic, which avoids some of the limitations of temporal logic [Wol81]. Fried-
man et al [FHNS02] specifies coverage by giving a set of projections of the
state space (e.g., on individual state variables, components of control flow)
that should be covered, possibly under some restrictions. Our approach gen-
eralizes this one, by allowing to define observers. Also, we can let one pass
of a state-space exploration tool generate a test suite that covers a large set
of coverage items, whereas the above approaches invoke a run of a model
checker for each coverage item.

Constraint Logic Programming for model based test case generation has
been used, e.g., by Marre and Arnould [MA00], by Meudec [Meu00], by
Pretschner et al. [Pre01]. These approaches typically compile the specifica-
tion into a constraint logic programming language, in which test cases can
be extracted using symbolic execution.

2 Extended Finite State Machines

We assume that the specification of a module to be tested is given as an
extended finite state machine in some syntax. In this section, we present
a generic way to describe EFSMs, but our work can be adapted to more
specific EFSM notations such as, e.g., UML Statecharts [GLM02] or SDL
[ITU99].

We assume that a System Under Test (SUT) interacts with its environ-
ment through events. Whenever the SUT receives an input event, it responds
by performing some local computation and emitting an output event. To
a given SUT, we associate a set A of event types, each with a fixed arity.
An event is a term of form a(d1; : : : ; dk) where a is an event type of arity k
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and d1; : : : ; dk are the parameters of the event. The set A of event types is
partitioned into input event types and output event types. A trace is a finite
sequence a1(d1)=b1(d01) a2(d2)=b2(d02) � � � an(dn)=bn(d0n)

of input/output event pairs. Intuitively, the trace represents a behavior
where the SUT, starting from its initial state, receives the input event,a1(d1) and responds with the output event b1(d01). Thereafter, it receives
the input event a2(d2) and so on. An input sequence is a finite sequence of
input events.

Assume a set AI of input event types, and a set AO of output event
types. An Extended Finite State Machine (EFSM) over (AI ; AO) is a tuplehL; l0; v; Ei where� L is a finite set of locations (aka control states).� l0 2 L is the initial location.� v is a finite set of state variables.� E is a finite set of edges, each of which is of forme : l l0-a(w); g ! u := expr=b(expr 0)

where

– e is the name of the edge,

– l is the source location, and l0 is the target location,

– a 2 AI is an input event type, and w is a tuple of formal param-
eters of a,

– g is a guard,

– u := expr is an assignment of new values to a subset u � v of the
state variables, and

– b(expr 0) is an expression which evaluates to an output event.g, expr, and expr0 may depend on the formal parameters w of the
input event and the state variables v.

Intuitively, an edge of the above form denotes that whenever the EFSM is
in location l and receives an event of form a(w), then, provided that the
guard g is satisfied, it can perform a computation step in which it updates
its state variables by u := expr, emits the output event b(expr 0) and moves
to location l0. We require the EFSM to be deterministic, i.e., that for any
two edges with the same source location l and parameterized input eventa(w), the corresponding guards are inconsistent.
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(ii)

coffee()

display()

make()

done()

insert(x)

show(m)

BrewerController

(i)

e5:display()!show(m)

e3:done()! BUSYIDLEe4:display()!show(m)

e2:coffee(),m>0!make(),m := m � 1

e1:insert(x), x+m�5 ! m := m + x
Figure 1: An EFSM specifying the controller of a simple coffee machine.

A system state is a tuple hl; �i where l is a location, and � is a mapping
from v to values. We can extend � to a partial mapping from expressions
over v in the standard way. The initial system state is the tuple hl0; �0i wherel0 is the initial location, and �0 gives a default value to each state variable.

A computation step is of the form hl; �i a(d)=b(d0)�! hl0; �0i consisting of system

states hl; �i and hl0; �0i, an input event a(d), and an output event b(d0), such

that there is an edge of the (above) form l a(w);g!u:=expr=b(expr 0)- l0, for which�(g[d=w]) is true, �0 = �[u 7! �(expr[d=w])], and d0 = �(expr0[d=w]). A run

of the EFSM over a trace a1(d1)=b1(d01) � � � an(dn)=bn(d0n) is a sequence of
computation stepshl0; �0i a1(d1)=b1(d01)�! hl1; �1i a2(d2)=b2(d02)�! � � � an(dn)=bn(d0n)�! hln; �ni
labelled by the input-output event pairs of the trace.

Example 1 In Figure 1 an EFSM (from [HLSU02]) specifying the behavior
of the controller of a simple coffee machine which interacts with a user and a
brewer unit is shown. The controller has L = fIDLE ;BUSY g, l0 = IDLE,v = fmg, AI = finsert ; coffee ; display ; doneg, AO = fshow ;makeg, andE = fe1; e2; e3; e4; e5g. The parameter x and the variable m take values that
are integers in the range [0 : : : 5].

An EFSM can be used to check that a trace of a SUT conforms to
its specification, by checking that each output event produced by the SUT
conforms to the corresponding output event prescribed in the EFSM. For test
generation, the output events will not be significant, and we will therefore
omit them in the rest of the paper, thus writing an edge of an EFSM asl a(w);g!u:=expr- l0. We can also consider specifications that are parallel
compositions of EFSMs, but omit such a treatment in this version of the
paper.
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3 Observers

In this section, we present how to use observers to specify coverage criteria
for test generation or test monitoring. A coverage criterion typically consists
of a (long) list of items that should be “covered” or “visited”. For instance,
the criterion of “full location coverage” stipulates that a test suite should
visit all locations of a given EFSM. We will use the term coverage item for
an item that should be “covered” or “visited”. Letting a test sequence be
represented as a trace, we can use standard techniques from model-checking
and run-time verification [VW86, HR02] to represent a coverage item by
an observer, which monitors a trace and “accepts” whenever the coverage
item has been covered. An observer observes how an EFSM executes a run
over a trace, and “remembers” some chosen aspects of the EFSM execution.
The observer can observe the events of the trace, as well as syntactical
components of edges that the EFSM traverses in response to observed events,
but should not interfere with the execution of the system.

Typical coverage criteria consist not only of a single coverage item, but
of a large set of coverage items. We therefore extend the notion of observers
by a parameterization mechanism so that they can specify a set of coverage
items. Parameterized observers are simply observers, in which locations and
edges may be parameterized by parameters that range over given domains.
Each choice of parameter values gives a certain observer location or edge.
For each specified coverage item, the observer has an accepting (possibly
parameterized) location which (for convenience) we give the name of the
corresponding coverage item. When the accepting location is entered, the
trace has covered the corresponding coverage item.

As a very simple example, the coverage item “visit location l of the
EFSM” can be represented by an observer with one initial state, and one
accepting location, named loc(l), which is entered when the EFSM enters
location l. The coverage criterion “visit all locations of the EFSM” can
be represented by a parameterized observer with one initial state, and one
parameterized accepting location, named loc(L), where L is a parameter that
ranges over locations in the EFSM. For each value l of L, the location loc(l)
is entered when the EFSM enters location l.

Formally, an observer is a tuple (Q; q0; Qf ; B) where� Q is a finite set of observer locations� q0 is the initial observer location.� Qf � Q is a set of accepting observer locations, whose names are the
corresponding coverage items.� B is a set of edges, each of form
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q q0-b
where b is a predicate that can depend on the input event received by
the SUT, the mapping from state variables of EFSM to their values
after performing the current computation step, and the edge in the
EFSM that is executed in response to the current input event.

Intuitively, at any specific instant during test execution the observer is in one
of its locations, q say. At each occurrence of an event, the observer traverses
an outgoing edge from q, whose predicate is satisfied for this event, and the
corresponding transition performed by the EFSM. Note that, in contrast
to EFSMs, observers may be non-deterministic, since a coverage item in
general can be covered in several ways.

In many cases, the initial location q0 has an edge to itself with the
predicate true. We use the symbol � to represent q0 together with such a
self-loop. Similarly, we assume that each qf 2 Qf has an edge to itself with
the predicate true. We use the symbol} to represent accepting locations. In
section 3.2, we discuss the effect of these self-loops in more detail. Intuitively,
the one in q0 is often used to allow the observer to non-deterministically start
monitoring at any point of an EFSM run. The loop in each qf is used to
allow an observer to stay in an accepting location.

In order for observers to specify coverage criteria consisting of several
coverage items, we allow locations and edges to be parameterized. Each
parameter has a finite domain, which could be the set of EFSM locations,
edges, state variables, or similar. We use uppercase letters in typewriter
font for parameters. A parameterized location represents the collection of
locations obtained by instantiating its parameters, and similarly for edges.

3.1 Observer Predicates

In the following we introduce a more specific syntax for the predicates b
occurring on observer edges. The predicates will use a set of predefined
match variables that are given values at the occurrence of� an event a(d),� an edge e : l a(w);g!u:=expr- l0 of the EFSM, traversed in response toa(d),� the computation step hl; �i a(d)�! hl0; �0i generated in response to a(d).

For a traversed EFSM edge we use the following match variables (with as-
sociated meaning):
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event type is the event type a of the occurring event

event-pars is the list d of parameters of the eventedge is the name etarget lo
 is the target location l0
guard is the guard expression g
assignments is the set u := expr of assignments
target val is the function from EFSM state variables to values, s.t. val(u)

is the value �0(u) of variable u just after the computation step.

Similarly, we also define sour
e lo
 for the source location and source val
for the value �(u) of variable u just before the computation step. To be able
to express more interesting properties we also introduce a set of operations
that can be used together with the match variables:� lhs is a function to get the left hand side expression of an assignment.

A left hand side expressions is always assumed to be a variable.� rhs is a function to get the right hand side expressions of an assign-
ment. The right hand side expression, expr, uses the vocabulary de-
fined for the EFSM specification.� vars is a function such that vars(Exp) returns a set with all variables
found in Exp. Exp is a set that contains the result of applying rhs to
each assignment in assignments, or a guard expression.� affect is a function such that affect(A; V ar1; V ar2) returns the assign-
ment it is being applied to, A, if V ar1 2 vars(rhs(A))^V ar2 = lhs(A)
otherwise the empty set is returned.� map is a function such that map(Fun; Set) applies the function, Fun
on each element in the set Set and returns the set of the results.

With the match variables and operations above we define new functions that
can be used as tests in the observer. In this paper, we shall make use of:� def (v), which is true iff the variable v is defined by the transition in

the EFSM. This can be expressed as:v 2 map(lhs; assignments)� use(v), which is true iff the variable v is used (in a guard or assignment)
by the transition in the EFSM. This can be expressed as:v 2 vars(map(rhs; assignments)) _ v 2 vars(guard)� da(v1; v2), which is true iff the variable v1 is on the right hand side
and variable v2 is on the left hand side of the same assignment in the
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(i) (ii) (iii)
l0l1l2 
(),x=tt ^ y=tt !a()! x:=tt

e0:e2:

e1:b(),y=ff ! y:=tt

def(Z) ^ edge = E: def(Z)

use(Z) ^ edge = E
0du(Z; E; E

0)

q0q1(Z; E): def(x)

q0q1(x ; e1 )du(x ; e1 ; e2 )

def(x) ^ edge = e1

use(x) ^ edge = e2

Figure 2: Examples of (i) observer monitoring definition (on edge e1) and
use (on edge e2) of variable x, (ii) a parameterized observer, and (iii) a
simple EFSM.

EFSM specification. The function can intuitively be understood to be
true if v1 directly affects v2. This can be expressed as:map(affect(v1; v2); assignments) 6= ;

Example 2 The (non-parameterized) observer in Figure 2(i) specifies def-
inition-use pair coverage for a specific variable m, and specific edges e1

and e2 . Figure 2(ii) shows a corresponding (parameterized) observer that
specifies definition-use pair coverage for any EFSM variable Z, and EFSM
edges E and E0. This is done by parameterizing the location q1 with any
variable and any edge, and the accepting location du with any variable and
any two edges. The edges are parameterized in a similar way. For example,
there is one observer edge from location q1(z; e) to location du(z; e; e0) for
each EFSM variable z, and each pair e; e0 of EFSM edges.

3.2 How Observers Monitor Coverage Criteria

In test case generation or when monitoring test execution of a SUT, an
observer observes the events of the SUT, and the computation steps of the
EFSM. Reached accepting locations correspond to covered coverage items.
We formally define the execution of an observer in terms of a composition
between an EFSM and an observer, which has the form of a superposition
of the observer onto the EFSM. Each state of this superposition consists
of a state of the EFSM, together with a set of currently occupied observer
locations.

Say that a predicate b on an observer edge is satisfied by a computation

step hl; �i a(d)�! hl0; �0i of an EFSM, denoted hl; �i a(d)�! hl0; �0i j= b if b holds
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for the event a(d), the computation step hl; �i a(d)�! hl0; �0i, and the edgee : l a(w);g!u:=expr- l0 from which the computation step is derived.
Formally, the superposition of an observer (Q; q0; Qf ; B) onto an EFSMhL; l0; v; Ei is defined as follows.� States are of the form hhl; �i k Qi, where hl; �i is a state of the EFSM,

and Q is a set of locations of the observer.� The initial state is the tuple hhl0; �0i k fq0gi, where hl0; �0i is the
initial state of the EFSM, and q0 is the initial location of the observer.� A computation step is a triple hhl; �i k Qi a(d); hhl0; �0i k Q0i such thathl; �i a(d)�! hl0; �0i andQ0 =

� q0 j q b�! q0 and q 2 Q and hl; �i a(d)�! hl0; �0i j= b �� A state hhl; �i k Qi of the superposition covers the coverage item
represented by the location qf 2 Qf if qf 2 Q.

Note that the way the set Q is updated essentially results in an (on-the-
fly) subset construction of the parameterised observer. Initially, Q contains
only the initial observer location q0. In the subsequent computation steps,Q contains the set of all occupied observer locations, representing already
covered and partially covered coverage items. In each computation step, the
set of occupied observer locations Q0 is obtained by generating all possible
successors to the locations in Q, i.e. all q0 such that there exists a q 2 Q and

an edge q b�! q0 2 B with b satisfied by the computation step of the EFSM.
Recall that both the initial and all accepting observer locations have

implicit self-loops with predicate true. This means that in the superposition
of the observer onto an EFSM, the initial observer location q0 is always
occupied and all reached accepting observer locations (representing covered
coverage items) are guaranteed to remain in Q. The fact that q0 is always
occupied can be intuitively understood as allowing for the observer to non-
deterministically start monitoring an EFSM (or a SUT) at any computation
step of an run (or at any point during test execution).

Example 3 If the observer in Figure 2(ii) is superposed onto the EFSM in
Figure 2(iii), the following computation steps can be taken hhl0; fx=ff; y=

ffgi k fq0gi a(); hhl1; fx=tt; y=ffgi k fq0; q1(x ; e0 )gi b(); hhl0; fx=tt; y=ttgi kfq0; q1(x ; e0 ); q1(y ; e1 )gi a(); hhl1; fx= tt; y = ttgi k fq0; q1(x ; e0 ); q1(y ; e1 )gi
(); hhl2; fx=tt; y=ttgi k fq0; q1(x ; e0 ); q1(y ; e1 ); du(x ; e0 ; e2 ); du(y ; e1 ; e2 )gi.
Thus, the two possible definition-use pairs are covered.
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target loc=L

(iv)

(i)
loc(L)

q0q1(X; E)

def (X) ^ edge=E:def (X)

use(X)

all def (E)

(ii) du(X; E; E
0)

affect pair(X; E; Z; E
0)

q0

edge cov(E)

edge=E q1(X; E)

use(X) ^ edge=E
0

q0 :def (X)

(iii)
def (X) ^ edge=E

(v)

q0q1(X; Y; E)

da(X; Y) ^ edge=E

da(Y; Z) ^ edge=E
0

q0

q0

(vii)
:def (Y)

q0

loc var(L; V)

(vi) event var(V)

target loc=L^ event=insert(V)
target val(m)=V

Figure 3: Seven examples of coverage criteria expressed as observers.

3.3 Examples of Observers

Figure 3 shows observers specifying a number of coverage criteria described
in the literature [CPRZ89].

The all-locations coverage criteria is specified by the observer shown in
Figure 3(i), where the parameter L is any location in an EFSM. If the
observer is superposed onto the EFSM of Figure 1, we have that L =fIDLE ;BUSY g and the edge of the parameterized observer represents two
edges, one guarded by target loc = IDLE with target location loc(IDLE )
target loc(BUSY ), and the other guarded by target loc = BUSY with
target location loc(BUSY ). The set of possible coverage items is thusfloc(IDLE ); loc(BUSY )g.

The all-edges coverage observer in Figure 3(ii) is similar to the all-
location coverage observer. The edges of the EFSM in Figure 1 is E=fe1 ; : : : ; e5g,
and thus the set of possible coverage items when the observer is superposed
onto the EFSM is fedge cov(ei) j ei 2 E g.

The all-definition use-pairs (all-uses [CPRZ89]) coverage observer in Fig-
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ure 3(iii) has an accepting location du(X; E; E0), where X is a variable name,
E is an edge on which X is defined, and E0 an edge on which X is used.
Variable X may not be redefined in the trace between E and E0. If the
observer is superposed onto the EFSM the complete set of coverage items
is fdu(m; e1 ; e1 ); du(m; e1 ; e2 ); du(m; e1 ; e4 ); du(m; e2 ; e1 ); du(m; e2 ; e2 );
du(m; e2 ; e4 ); du(m; e2 ; e5 )g. The definition-use pair du(m; e1 ; e5 ) can not
be covered since m is always redefined on edge e2 in between e1 and e5 .

The all-definitions coverage observer of Figure 3(iv) is similar to the all-
definition use-pairs coverage except that only the defining edges are required
to be covered. When the observer is superposed with the EFSM in Figure 1
the set of accepting locations is fall def (e1 ); all def (e2 )g.

The all affect-pairs (Nafos’ required k-Tuples [CPRZ89]) coverage ob-
server shown in Figure 3(v) accepts whenever a variable x affects a variable
z via another variable y . In this case we require that x directly affects
y which, without redefinition, directly affects z . No such affect pairs are
possible in the EFSM of Figure 1.

The context coverage criteria observer in Figure 3(vi) covers all values of
a given variable m. We use target val(m), to denote the value of m at the
target EFSM-state. The observer has an accepting location loc var(L; V),
where V is the value domain of variable m. E.g. loc var (IDLE ; 0) and
loc var(BUSY ; 1) are accepting locations. The observer in Figure 3(vii)
is similar, but covers the possible values the event parameter at transitions
labelled with the event insert(x ).

4 Test Case Generation

4.1 Algorithms

At test case generation, we use the superposition of an observer onto an
EFSM, and views the test case generation problem as a search exploration
problem. To cover a coverage item qf is then the problem of finding a tracetr = hhl0; �0i k fq0gi a(d); : : : a0(d0); hhl; �i k Qi such that qf 2 Q
We will use !(tr) = a(d) : : : a0(d0) to denote the word of the trace tr, or just! whenever tr is clear from the context. In general, a single trace tr may
cover several accepting locations of the observer. We say that the trace tr
covers n accepting observer states if there are n accepting states in Q, and
we use jQf \Qj to denote the number of accepting states in Q.

We are now ready to present the test case generation algorithm. We shall
limit the presentation to an algorithm generating a single trace. The same
technique can be used to produce sets of traces to cover many coverage items.
Alternatively, the EFSM model can be annotated with edges that reset the
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Pass:= ;, Max := 0, !max := !0

Wait:= fhhs0 k fq0gi; !0ig
while Wait 6= ; do

select hhs k Qi; !i from Wait

if jQf \Qj > Max then!max := !, Max := jQf \Qj
if for all hs k Q0i in Pass: Q 6� Q0 then

add hs k Qi to Pass

for all hs00 k Q00i
such that hs k Qi a; hs00 k Q00i:
add hhs00 k Q00i; !a i to Wait

return !max and Max

Figure 4: An abstract breadth-first search exploration algorithm for test
case generation.

EFSM to its initial state. A generated trace can then be interpreted as a
set of test cases separated by the reset edges [HLN+04].

An abstract algorithm to compute test case is shown in Figure 4. To
improve the presentation, we use s to denote a system of the form hl; �i, s0

to denote the initial system state hl0; �0i, and a to denote an input actiona(d). The algorithm computes the maximum number of coverage items that
can be visited (Max), and returns a trace with maximum coverage (!max).
The two main data structures Wait and Pass are used to keep track of the
states waiting to be explored, and the states already explored, respectively.

Initially, the set of already explored states is empty and the only state
waiting to be explored is the extended state hhs0 k fq0gi; !0i, where !0 is
the empty trace. The algorithm then repeatedly examines extended states
from Wait. If a state hs k Qi found in Wait is included in a state hs k Q0i
in Pass, then obviously hs k Qi does not need to be further examined. If
not, all successor states reachable from hs k Qi in one computation step
are put on Wait, with their traces extended with the input action of the
computation step from which they are generated. The state hs k Qi is saved
in Pass. The algorithm terminates when Wait is empty

The variables !max and Max are initially set to the empty trace and
0, respectively. They are updated whenever an extended state is found in
Wait which covers a higher number of coverage items than the current value
of Max. Throughout the execution of the algorithm, the value of Max is
the maximum number of coverage items that have been covered by a single
trace, and !max is one such trace. When the algorithm terminates, the two
values Max and !max are returned.
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4.2 Bitvector Implementation

In order to efficiently represent and manipulate the set Q of observer loca-
tions we shall use bitvector analysis [KSV96]. Let the set Q be represented
by a bitvector where each bit represents an observer location q0. Then each
bit is updated by the following functionfq0(q0) =

_hb;qi2 in(q0) q ^ b
where in(q0) = f hb; qi j q b�! q0 2 B g is the set of pairs of predicates b
and source locations q of the edges ingoing to the location q0. That is, given

a state of the superposition hhl; �i k Qi and an EFSM-transition hl; �i a(d)�!hl0; �0i the bit representing q0 is set to 1 if there is an observer edge q b�! q0 2B, such that q 2 Q and hl; �i a(d)�! hl0; �0i j= b. Otherwise the bit representingq0 is set to 0. It should be obvious that this corresponds precisely to the
semantics of an observer superposed onto an EFSM, described in Section 3.2.

Example 4 When the observer in Figure 2(ii) is superposed onto the EFSM
in Figure 2(iii), we have E = E0 = E = fe0 ; e1 ; e2g and Z = v = fx ; yg.
Thus, we have thatQ =

� q0

	 [ � q1(z; ea) j z2 v ^ ea2E	 [ � du(z; ea; eb) j z2 v ^ ea; eb 2 E	
Any enumeration of the set can be used as index in the bitvector. As the
observer has three locations with parameters we get three types of bitvector
functions: fq0(q0) = q0 ^ tt (1)fq1(vi ;ej )(q1(vi ; ej )) = ( q0 ^ def (vi) ^ (edge = ej ) ) _

( q1(vi ; ej ) ^ :def (vi) ) (2)fdu(vi ;ej ;ek )(du(vi ; ej ; ek )) = ( q1(vi ; ej ) ^ use(vi) ^ (edge = ek ) ) _
( du(vi ; ej ; ek ) ^ tt ) (3)

There is one function of type (1), six of type (2), and 18 of type (3). Note
that (1) is always true and that (3) will remain true once it becomes true,
due to implicit self-loops in these locations.

4.3 Implementation Efforts

Some of the techniques presented in this paper have been implemented in a
prototype version of the model-checking tool Uppaal [LPY97], extended for
test case generation [HP04]. The current implementation uses the bitvector
implementation described above, but is limited to a number of predefined
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coverage criteria. For a given coverage criteria (a set of) test cases can be
generated from system specifications described as DIEOU-timed automata
[HLN+04]. We are currently in progress with a larger case-study in collab-
oration with Ericsson where this tool will be applied.

We are also developing a tool operating on a subset of the functional
language Erlang, also using the techniques presented in this paper. The
tool will be applied in a case-study in collaboration with Mobile Arts.

5 Conclusions

We have presented a technique for specifying coverage criteria in a simple
and flexible manner using observer automata with parameters. Observers
have shown to be a flexible tool in model checking and run-time monitoring,
and by this paper we have shown that they are a versatile tool for specifying
coverage criteria for test case generation and test monitoring. In particular
the parameterization mechanism, as used in this paper, allows a succinct
specification of several standard generic coverage criteria. In this way, test
case generation can be transformed into a reachability problem, which can
be attacked by a standard state-space reachability tool.

In previous works, we have implemented special cases of this test case
generation technique, using Uppaal, indicating that the approach is practi-
cal. We are currently working on a general implementation of the observer
concept, and plan to apply it in a larger case study.
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2005-003 MagnusÅgren:High-Level Modelling and Local Search

2005-002 Hakan Zeffer:Hardware-Software Tradeoffs in Shared-Memory Implementa-
tions

2005-001 Jesper Wilhelmsson:Efficient Memory Management for Message-Passing
Concurrency — part I: Single-threaded execution

2004-006 Stefan Johansson:High Order Difference Approximations for the Linearized
Euler Equations
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